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Structure of this Chapter & Motivation

Structure of Chapter

Subsection 1: Essential foundations handled in CG-I like affine spaces
Subsection 2: Basic concepts about (surface-like) geometry

Motivation
Modeling so far: Purely polygonal objects (meshes)
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Evaluation:
+ Able to generate arbitrary shapes
– Geometry manipulation only at the finest level (vertices)
– No smooth surfaces

Rendering is almost always based on polygons.
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Repetition: Affine Space

Notation (Affine Space)

All geometric objecte are defined using points (vertices) represented in an
affine space.

Affine Space A: Vector space extended by points.
Given vectors ~u, ~v ∈ A, points P,Q ∈ A and a,b ∈ R, we have:

P−Q is a vector
P + ~v,P + a~v are points

A coordinate system of A consists of a vector basis {~u1, . . . , ~un} of A and
an origin O.
Coordinate representation of P ∈ A using the position vector ~p of P:

P = O + ~p = O + p1~u1 + p2~u2 + . . . + pn~un, P =

p1
...

pn


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Affine Space

Notation (Affine Combination and Convex Hull)

Affine Combination: Given points P1, . . . ,Pk ∈ A and scalar values

s1, . . . , sk with
k∑

i=1
si = 1 (partition of unity),

k∑
i=1

siPi ∈ A again is a point, since

k∑
i=1

siPi = s1P1 + s2P2 + . . . + sk Pk

= (s1 + . . . + sk︸ ︷︷ ︸
=1

)P1 + s2 (P2 − P1)︸ ︷︷ ︸
~v2

+ . . . sk (Pk − P1)︸ ︷︷ ︸
~vk

Convex Hull H of a set of points P1, . . . ,Pk ∈ A is the smallest convex set
including them. H contains all

Q =
k∑

i=1

siPi , with
k∑

i=1

si = 1 and si ≥ 0 ∀i = 1, . . . , k
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Affine Combination

Example (Affine Combination)

Line passing through points P1 6= P2:
G : P(s) = P1 + s (P2 − P1) = (1− s)P1 + sP2, s ∈ R
The mapping s → P(s) is bijectiv, the convex hull is the line segment P1P2

Plane passing through three non collinear points P1,P2,P3

E : P1 +s1 (P2 − P1)+s2 (P3 − P1) = (1−s1−s2)P1 +s1P2 +s2P3, s1, s2 ∈ R

The mapping (s1, s2)→ P(s1, s2) is bijectiv, the convex hull is the triangle
∆ (P1,P2,P3).

1
3 (P1 + P2 + P3)

P1

P2 P3

P1

P2

(1 − s)P1 + sP2

s2 = 0

s2 < 0
s2 > 0

s > 1

s < 0
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Baryzentric Coordinates

Notation (Baryzentric Coordinates)

General Question: How to compute affine weights for a given point P with
respect to Pi ∈ A, i = 0, . . . , k

Affine Independence: Pi ∈ A, i = 0, . . . , k with dim(A) ≥ k are affine
independent, if and only if

The vectors ~vi = Pi − P1, i = 1, . . . , k are linear independent

respectively
k∑

i=0

siPi =
k∑

i=0

tiPi with
k∑

i=0

si =
k∑

i=0

ti = 1⇔ si = ti ∀i = 0, . . . , k

Baryzentric Coordinates are the unique weights si of points P with respect
to the affine independent points Pi , k = 1, . . . , k
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Baryzentric Coordinates for Triangles

Example (Baryzentric Coordinates for a Triangle in R2)

Given triangle with vertices Qi , i = 0,1,2 and point P

Wanted: Baryzentric coord. si , i = 0,1,2 with P =
∑2

i=0 siQi ,
∑2

i=0 si = 1
Approach: With s0 = 1− s1 − s2, ~ui = Qi −Q0 and ~v = P−Q0 we have

(Q1 −Q0,Q2 −Q0)
(s1

s2

)
= P−Q0 ⇔

(u1x u2x
u1y u2y

)(s1
s2

)
=
(vx

vy

)
⇒ s1 =

u2y vx − u2xvy

u1xu2y − u2xu1y
and s2 =

u1xvy − u1y vx

u1xu2y − u2xu1y

Geometric Interpretation: si resembles an area ratio

s1 =
area(∆(Q0,P,Q2))

area(∆(Q0,Q1,Q2))

s2 =
area(∆(Q0,Q1,P))

area(∆(Q0,Q1,Q2))

analog s0 =
area(∆(P,Q1,Q2))

area(∆(Q0,Q1,Q2))

Q1

Q0

~u2

~u1 ~v

P

Q2
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Affine Transformation

Definition (Affine Transformations T : Rn −→ Rn (usually n = 2,3))

T : Rn −→ Rn is affine, if affine combinations are invariant under T , i.e.

Given: Points Pi , weights si , i = 1, . . . , k with
k∑

i=1

si = 1

Property: For P =
k∑

i=1

siPi we have T (P) = T (
k∑

i=1

siPi ) =
k∑

i=1

siT (Pi )

Notably: T leaves baryzentric coordinates unchanged!

Characterization: T is affin if and only if T is linear and/or a translation

T (P) = M · P +~t, with M ∈ Rn×n, ~t ∈ Rn

Homogenous Notation for affine transformations

P =

(
px
py
pz

)
→

px
py
pz
1

 and M

(
px
py
pz

)
+

(
tx
ty
tz

)
→

 tx
M ty

tz
0 0 0 1

px
py
pz
1


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Geomtery Types

Notation
Geomtery Types
Geometry: A set of points (mainly in R2 or or R3) without specific structure
Curve: A geometry with (locally) one dimensional structure.
Surface: A geometry with (locally) two dimensional structure.
Volume: A geometry with (locally) three dimensional structure.
Note: Volumentric objects are often represented by their surface.

Model / Object: A geometry with semantics, e.g. house, car, horse

SurfaceCurvePoints
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Manifold and Orientability

Notation (Manifold and Orientability)

Problem: “Locally n dimensional structure” is a very vage statement
k -Manifold: A set M ⊂ Rd is k-manifold, k ≤ d, if

∀P ∈ M : ∃ neighborhood U(P) ⊂ Rd ,V (0) ⊂ Rk of P resp. of 0
and a continuous bijective mapping f : V (0) −→ U(P) ∩M

Orientability (k = 2, d = 3): A two-sided manifold (surface)

PM

f (V (0)) = U(P) ∩M

0

V (0)
U(P)

f

R2 R3

Example 2-manifold Moebius-Band (single sided)
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Manifold and Boundary

Remark
Example of non-manifold geometries:

P

U(P)

P

U(P)

curve in R2 polygons in R3

Manifolds are per se unbounded, i.e. they have no boundary (e.g. sphere
or plane)
The boundary of a manifold ∂M is defined via half-open neighborhoods

Π ⊂ {1, . . . , k},V Π(0) = {Q ∈ V (0) : qi ≥ 0∀i ∈ Π} ⊂ Rk

f P

f (V +(0)) = U(P) ∩M

0
U(P)

M

V Π(0)
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Mathematic Representation of Geometry

Notation
Polygon: Planar 2-manifold with
polygon-line as boundary

Mesh: Set of polygons with common
edges and vertices

Parametric, e.g. functional curve of a
half cycle: f (x) =

√
1− x2, x ∈

[−1,1] as function of x 1
x

f (x)

1

Implicit Representation (not handled in CG-II): Definition of a n − 1-dim.
geometry in an n-dim. space via a scalar function f : Rn −→ R (n = 2: curve,
n = 3: surface) with respect to an iso value a:

General: {P = (px ,py ,pz) ∈ R3 : f (P) = a}
Example sphere: f (P) = p2

x + p2
y + p2

z , a = r2

Subdivision Surfaces: Recursively subdivision of meshes leading to smooth
limit surfaces.
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Primitive, Object and Modeling Technique

Notation

Primitive: Basic form for modeling
is based on one math.
representation
Example sphere: exact as implicite
geometry or approximated by
polygons

Object: Combination of several primi-
tives, e.g. using boolean operations.

Modeling Technique: Method to com-
bine or generate objects out of several
primitives and/or parameter values

Object

Primitive

ParametricMesh Implicite Subdivision

one of

Parameter 1

Parameter 2

Geometry
Primitive/

Modeling Technique
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