Computer Graphics Il
3: Freeform Curves and Surfaces

Computer Graphics and
Multimedia Systems Group

University of Siegen

(3
cG >

A. Kolb CG Il — 3: Freeform Curves and Surfaces

Structure of this Chapter

Structure of Chapter
@ Subsection 1: Bézier-curves (single polynomial curves)
Subsection 2: Bézier-splines (piece-wise polynomial curves)

Subsection 4: Tensor product surfaces

°
°
°
@ Subsection 5: Differential geometry for curves

A. Kolb CG Il — 3: Freeform Curves and Surfaces

3

cG

Subsection 3: B-Spline curves (intrinsic piece-wise polynomial curves

21

d

22

cG

Motivation « ['

Motivation (Criteria for Modeling Techniques)

Geometric Models: Elementary for all graphic 3D applications
Main question: How to efficiently build a desired model / shape?
Criteria from the application viewpoint:

@ Problem-oriented methods (e.g. accuracy & freedom)
@ Intuitive building technique —> what are “good” control parameters
@ Sensible follow-up handling /reprocessing

Criteria from an information technology viewpoint:

@ Geometry as a function of model parameters (internal representation)

@ Geometry independance of specific control parameter change e.qg.
affine invariance)

@ Representation of geometry for real-time-graphics or offline-rendering

A. Kolb CG Il — 3: Freeform Curves and Surfaces 23
Historical Remarks " g;% ['
Remark

Origin of geometric modelling: Industrial production in particular the
manufacturing of automobiles

Prior to 1960: Various drawing methods as e.g. curve ruler or metal ruler.

@ Inacurate transfer to real shapes for cast (di: Guss), dies (dt: Stanzen) eftc.
@ Surfaces only manageable via curve arrays
after 1960: Drawing approaches transferred to computers

@ Modelling of warped objects (curves, but also surfaces)
@ Intuitive control parameters with high flexibility
@ Efficiently computable on processors (— polynomials!)

A. Kolb CG Il — 3: Freeform Curves and Surfaces 24

3.1: Bézier-Curves c = "

cG >

Objective (Control of Polynomials)
Arbitrary shape: Function graphs are not enough!
Intuitive form control: Monomial-basis 1,u,u?, ... does not work!

Remark (Function Graphs vs. Parametric Curves)

Graph: Plot the dependant parameter y = f(z) over the free parameter x

Param. curve: Representation of several dependant parameters
= fz(u),y = fy(u),..., ignoring the free parameter u

y = flz) L4 Y=
y=+v1—x2 (Z) —
1
® T > T
Graph (z,v1 — x?) Parametric Curve (sin(u), cos(u))
A. Kolb CG Il — 3.1: Bézier-Curves 25
Control of Polynomials with Monomial-Basis §§ [I

Direct utilization of the monomial-basis for 2D parametric curves of the
degree n

F(u) = (fw(u)> - szuzy mit Pz € Rza i = 07 cey U E [07 1]
=0

But no intuitive connection between the “parameter points” P; and the curve
shape:

1—‘ Y P 1

£ = () + ()

A. Kolb CG Il — 3.1: Bézier-Curves 26

Construction of a Parametric Parabola x "

cG

Example

Given: Three points: Cy, C;, C, € R?
Construction: be u € |0, 1], then bild

Ci(u) = (1—u)Cq+uC;
Ci(u) = (1—-u)C;+uCy Co
C(u) = Ci(u) = (1—u)C}+uCj o,
= (1—u)*Cp+2(1 —u)uCyi + uCy
Properties of this construction: , .
0 0.6 1w

@ C(u) is affine combination of C;, since
1-—u)?+201-wu+uv?=((1-u)+u)?=1
© Endpoint interpolation: C3(0) = Cy, C3(1) = C»

Q {C(u) : uel0,1]} c A(Cyp,Cy,C,), i.e. curve lies in convex hull of the
control points, as the weights are > 0

A. Kolb CG Il — 3.1: Bézier-Curves 27

de Casteljau’s Algorithm 2 ul

cG

Algorithm (de Casteljau)

Given: Control points C;, i =0,...,n forn € N, and parameter u € |0, 1]
Initialization: CY=C;, i=0,...,n

Recursion: Affine-combinations of neighboring control points
CHl = (1- u)Ck—i—uCHl, i=0,....,n—k—1,k=0,...,n—1, C(u) =C}

O
Cg C?

- [w] [1—-u [u]

Cs C C;

M—uf [v] Q—u] [uv] [1—-u [u]

Co CY Cs Cs

A. Kolb CG Il — 3.1: Bézier-Curves 28

Bézier-Curves (n = 2) «

29 ¢G>

Notation
Parabola: C(u) = (1 —u)?Co +2(1 —uw)uC; + u?> C,
—— ——— \2/'/
—=B2(u) =B2(u) =B;(u)

Bernstein-Bézier-polynomials B?(u) are the weights of the
affine-combination of the C;

Bi(w) Biu) cy

B3 (u)
Co

C

Note: BZ(u) correspond to variable weights of an affine-combination as a
function of u

d

A. Kolb CG Il — 3.1: Bézier-Curves 29
Bézier-Curves (General Case) g§) [I
Notation

Bernstein-BézierPolynomials: For arbitrary n € N we define:

- n . o0 n\ i i n n!

— "¢, B (u), mit B (u):(i>u(1—u) und(i):m

=0 ’)
Bézier-Curves: For control points Cy, . .., C,, we define: C(u Z B (u

Cubic Case n = 3: Often Bez:er—curves of degree 3 are used:

Bo (U) B3 (u) |

Cy
i (u) B3 (u

Cs

Co

A. Kolb CGIl — 3.1: Bézier-Curves

30

Properties of Bernstein-Bézier-Polynomials g;% ['

Property (Bernstein-Bézier-Polynomials)

Polynomial-Basis: Each polynomial P € P™ (P" is space of the polynomials
of degree < n) can be Bézier-curve represented: Let My (u) = u*, we have

=0
Positivity: Foru € [0, 1] always applies: B}*(u) > 0
1 ifi=0 1 ifi=n
Endpoint interpolation: B*(0) = B!'(1) =
> > £ {0 else () {0 else
Partition of unity: 1 = [u + (1 — u)] :Z() (1 —u)"” ZB"
=0
Derivation:
—nBl ! (u) ifi =0
(Bi") (u) = { nBy~1(u) ifi=n
(B;‘_f() — B (u) ifo<i<n
A. Kolb CG Il — 3.1: Bézier-Curves 31
Properties of the Bézier-Curves . g§) [I

Property (Bézier-Curves)

Endpoint interpolation: C(0) = Cy, C(1) = C,, since By (0) = B*(1) =1,
otherwise Bl*(0) = B*(1) =0

Global impact of C;: C; influences C(u), u €]0, 1], since here B*(u) # 0, Vi

Affine Invariance: The curve C is affine invariant with respect to the control
points:

T affine mapping = T(C(u))=>» T(C;)Bj'(u) since » Bj'=1

1=0

Convexe Hull: Due to the positivity of B} and the affine invariance
C(u), u € |0, 1] lies within the convex hull of the control points

Variation Diminishing Property (without proof): The Bézier-curve has a
maximum of inflections equal to it's control polygon:

Case n = 2 :V line g we have: #{g N control polygon} > #{g N curve}
Case n = 3 :V plane E we have: #{E N control polygon} > #{FE N curve}

A. Kolb CG Il — 3.1: Bézier-Curves 32

Properties of Bézier-Curves <2 ul

cG >

Property (Bézier-Curves (cont.))

Derivation: Beézier representation of the first derivative:

Cw) = n (—coBg-l<u> +CaBIThw) + Y G [BIS () - B?‘l@)])

= nY (Ci1—C;)B' '(u)

7

n

I
o

End-tangents (special case): Foru € {0,1} applies:
C'(0) =n(Cy — Cyp) C'1)=n(C,—-C,_1)

Reference to de Casteljau: The last edge of the de Casteljau-scheme
corresponds to the tangent direction of the curve:

C'(u)=n(Cy'-Cp)

A. Kolb CG Il — 3.1: Bézier-Curves 3
Properties of Bézier-Curves g§) [I
Example

Given: Points Cy = G)’Cl = (110),02 = (%8),03 = <110)- wanted: C(%)

A

Endpoints: C(0) = Cy = (1,1)", C(1)=C5 = (10,1)"
Derivative: C’(1) =3 ((6, 9" — (2, 6)T> — (12,9)7 and

C'(u) = 320 (Cit1— Ci) B2(u) = 3 ((9) B3 (w) + () B2 (w) + () B3())

A. Kolb CGIl — 3.1: Bézier-Curves

34

Evaluation of Polynomial Curves g% ['

Remark
Evaluation of de Casteljau:

@ \ery stable (only interpolation, i.e. weights between 0 and 1)
@ Complexity: O(n?) per evaluation, more precisely

iy 1 o
Vector additions: (n+Ln Scalar multiplications: (n 4+ 1)n

Horner-Scheme: Based on the polynomial curve F(u) = Y., A;u* € P"

= Z A’ =Ag+u(Ay +u(As +u(As... +u(A, 1 +uAy)))...)
i=0

@ Less stable
@ Complexity: O(n), more precisely: n scalar multiplications, n vector

additions
A. Kolb CG Il — 3.1: Bézier-Curves 35
3.1.1: Rational Bézier-Curves - « [I
Motivation

So far: Only polynomial curves are representable
Aim: Better curve control through the introduction of weights w; for B} (u)
Important: Affine invariance must be preserved —> normalization of weights

> oCiv wZB” w; B (u)
C(u i=0 C,; B (u) with B (u) = <t
(w) = > imo wiBl (u Z () = > im0 WiBJ (u)
® | | | | [J
y | Cy R O

yields " B™(u) = 1
Example: Weight change at C,

g = 10

A. Kolb CG Il — 3.1.1: Rational Bézier-Curves 36

Homogenous Bézier-Curves 2 l'

37 ¢G>

Remark (Alternative Interpretation)

Draw curve in homogenous coordi- FHomogenous description:
nates and project the curve onto w = 1:

W; x;
of = |
wy
homogenous
Sr h _ Wi Yy n
25 C (U) _ Z W; 24 7 (u)
i=0 |

2
15 Normalization
1 C?(u)/Cr(u)
05 C(U) — C%(u)/c?u (u>
0 C2(u)/Cy(u)

projected curve

A. Kolb CG Il - 3.1.1: Rational Bézier-Curves a7

Influence of Weights 7 l'

cG

Remark (Influence of Weights w,)

General: The larger w; and for unchanged w;, j # i the curve C(u) runs
closer by C;

Special case: Conic sections (di: Kegelschnitte) forn = 2 and wy = wy = 1
results by variation of wy in:

ellipse segment wy < 1
C is a { parabola segment ; < { w; =1
wyp > 1

hyperbola segment

Special case: Circle segment for
n=2:

w0:w2:1andw1:1/\/§

A. Kolb CG Il — 3.1.1: Rational Bézier-Curves 38

3.1.2: General Parameter Interval o2 "

cG

Remark (Reparameterization using a Linear Function)

Goal: Use parameter interval [a, b] instead of [0, 1] e.g. for piecewise curves

c3 G C}
H e o2
CY ,‘

|
|
\ | /Cl l,l C2 7 C%
y I : :

to t to ty U

Reparametrization: Linear transformation ¢ : I = [t;,t;1]

— [0, 1] does not
change polynomial degree. Using ¢(u) = “x

Ajj , Aj =t;41 —t; we get

i = arte) = () (452) (1= 52) " = (1) (52) (a5)™

and (B[") (w) = ¢/(w) - (BY) (¢(w) = 2= - (B ($(u)

2

Note: The geometry of the curve is unchanged, but the derivative is scaled.

A. Kolb CG Il — 3.1.2: General Parameter Interval

39

Subdivision of Bézier-Curves c - l'

cG

Remark (Subdivision of the Bézier-Curve C(u))

Evaluation of C with a € [0, 1] delivers Bézier representation of the partial
curves on [0, a] and [a, 1]:

Note: The new Bézier curves with control points set {CE}, {CL} describe

sections of the same polynomial curve. However, changing e.g. C£ does not
have any influence on the left segment.

A. Kolb CG Il — 3.1.2: General Parameter Interval

40

Main Properties of Bézier-Curves 2 u

M cG >

Summary

Essential Advantages:

@ Intuitive control of the shape of the curve

@ Stabile calculation (de Casteljau)

@ Affine invariance and convex hull properties

@ Representation of all polynomials and conic sections

Essential Disadvantages:

@ Global influence of the control points on the curve
@ Only polynomial curves and conic sections, resp. (rational
Bézier-curves)

°
Number of degrees of freedom = number of control points =
polynomial degree + 1
— more degrees of freedon requires a higher polynomial de-
gree and thus more computation time.
A. Kolb CG Il — 3.1.2: General Parameter Interval a
3.2: Bézier-Splines g;% ['

Notation (Bézier-Spline Curves)

Approach: More degrees of freedom by joining several Bézier-curves
@ KnotvectorT = {ty <t; < ... < tgq1} forming k + 1 intervals
I;,7=0,...,k
@ k -+ 1 Bézier-segments C’+i (u), j = 0,...,k of the degree n
Bézier Spline Definition: Foru € [t;,t;41] the spline curve C(u) is defined
via C7+1i (u) co cy Cj C}

onh| C2

go Iy b I th I, 3 4

Question: Which conditions must be met for C to be a continuous and/or
smooth curve at the joints?

A. Kolb CG Il — 3.2: Bézier-Splines 12

Exkursion: Continuity Conditions g% ['

Definition (Continuous Differentiability / C* Continuity)

Formal: A function f(u) is in ug C*-continuous, if it can be
@ in uy k-times differentiable and
@ the k-th derivation in ug is continuous
Specifically:
@ C~': The curve is unsteady (step)
@ CY: The curve is continuous but cannot be differentiated (“cusp”)

@ C': The curve is once differentiable with a continuous tangent
@ C?: The curve is twice differentiable with continuous 2nd derivation

(curvature)
C—1 continuous C° continuous C' continuous C? continuous
but not C?
A. Kolb CG Il — 3.2: Bézier-Splines 1
C" Continuity Condition for Bézier Splines g§) [I
Property

In the following we focus on Bézier segments C°%{>, C-I1 of degree n over
the knot vector T' = {tg,t1,t2}, t; < t;4+1 and interval lenghts
A; =tip1 —t; = |1

Furthermore: We drop the interval when denoting the curve segments, i.e.

Ci — Ci,Ii

Given: Curve C° with control points C§, ..., CY

Wanted: Control points C} of C!, so that C' connects continuously to C° in
C(t1)

C"-continuity: C°(t;) = C'(t;1) has to be valid, thus C° = C} (endpoint
interpolation)

Coi C, co C’ =C}

o

C,, C, G, C

A. Kolb CG - 3.2. Bézier-Splines a4

C'! Continuity Condition for Bézier Splines g§) ['

Property
Precondition: C°-continuity, thus C° = C}

Additionally must be given: (C%)'(¢,) = (C!)'(¢1) (interpolation of the end
tangent)

(G (1) = & (O - Ch) = Ai (Cl -) = (CY(h)

Ap ~~
—=C}
cl c C}
ch C;
A. Kolb CG Il — 3.2: Bézier-Splines 15
C* Continuity Condition for Bézier Splines g§) [I

Property
Precondition: C'-continuity, thus C), = Cj = x5%-C9_; + 2% Ci
Additionally must be given: (C°)”(t;) = (C')"(t1), more precisely

n—2

(CH"(u) = 227N (Cipg — 2Ciq1 + Ci) B % (u) with A = |1, thus:

A2
1=0

(C)'(0) = (C)'(0) & cabya (Ch —2Ch, +Ch) = 5 (Ch - 2C1 +)

c! cont

C; = Cl+§—(cl (Cg 1+ & (C% 1— C%—z)))

A. Kolb CG Il — 3.2: Bézier-Splines 16

1 1 1 Aq)2 0 0 0
Cy;=2C, -C, + EA(I);Q (Cn -2C,_, + Cn—2)

_ 1 Aq 0 Ag 1 (Aq1)2 Aq 0 Ag 1 0 0
=2C; — (myr5;Cn-1 + mcl) t (o2 ((AO+A1 C.1+ mcl) —2C,_, + Cn—2)

_ _ Ao Ag(Ag)? 1 AN (ap)3 _ 5(A1)? 0 (A1)2 ~0
B (2 Sotar + (Ao)z(Ao-i'Al)) Ci+ (Aotal + (A0)2(Ap+Aq) 2(Ao)2 Crat (Ag)? Cr

_ 280(A0+A1)-AF+H(A1)? 1 -S| (ap? 58 1?% ~O (812 ~O
B Ag(Apg+A1) Ci + Xota; T (Ag)2(Ag+A7) (Ag)2 Cn1t (Ag)2 Cn1
_ (Ag+A1? A1 A ((AD2—(A0)?) 5 (a1)? 0 (A1)2 ~O

N AO(A0+A1)CI + ((A)2(Ap+A7) 2(Ao)2 Cnat (Ag)Z Tn—1

. A 1 A1 (A1 —AQ) (A1)2) (A1)2 ~0

=(1+5)cr+ (“Bo? 2(A(1)>2> Cr1+ 22 Cnt

_ A 1 Ay (a2 0 (21)2 ~O

A A
=C1+ 3:(Cp = (Chy + 3H(Ch_ —Chy)

= =

Remark
@ Wherefore C?: the human eye perceives C' as a step, e.g. picture frame:
[L 4 @ - -0 --©o-__0
Kreisb"ogen Bezier-Spline T

Catmull-Rom-Splines «3 ['

Approach (Interpolating Cubic, C'*-Continuous Bézier Splines)

Control Parameters: Given a uniform knot vectort; = j - A +to with A =1,
we interpolate points P ; and tangents Ej at parameterst;, j =0,...,k+1

Idea: Use cubic Bézier curves C7 over I; = [t;,tj+1], 7 =0,...,k
Problem: Two different control types (points, tangents)

Algorithm (Catmull-Rom-Splines)
Approach: Use only control points as parameters and estimate tangents
Calculation of Bézier points: For the j-th Bézier-segment we get
End point: G} =P;,C, =P,,1, j=0,...,k
TangentatP; :t; = 2 (Pj41 —Pj1), j=1,....k—1
End tangent, e.g.:ty = 3 (P1 — Py) andtyi2 = 2 (Pyi2 — Pji1)
Inner control points: t; = 3(C} — Cj) = C] = C) + 1t;,

analog: C} = C} — 1t; 4
A. Kolb CG Il — 3.2.1: Catmull-Rom-Splines a7
Catmull-Rom-Splines (cont.) “ gs% [I

T] q i r >
to t t ts ta

- 1
Tangente at Pj : t; = 5 (Pj_|_1 — Pj—l)
Interpolation of endpoints: C} =P;, C} =P, X
Interpolation of tangent: (CJ1 - C{)) = (C?jl - Cg_l) = gfj

A. Kolb CG Il — 3.2.1: Catmull-Rom-Splines a8

Main Properties of Bézier-Splines

49
Summary

Essential advantages:

@ All advantages of the Bézier-curves
@ Add. control points with fix polynom. degree

Essential disadvantages:

@ Compliance with specific continuity conditions or
@ Rather specific curve type (Catmull-Rom)

We want to have: “Built-in” continuity with

A. Kolb CG Il — 3.2.1: Catmull-Rom-Splines

Main Properties of Bézier-Splines

49

Summary

Essential advantages:
@ All advantages of the Bézier-curves
@ Add. control points with fix polynom. degree
Essential disadvantages:
@ Compliance with specific continuity conditions or
@ Rather specific curve type (Catmull-Rom)
We want to have: “Built-in” continuity with
@ Maximum continuity, i.e. C"~1 for degree n

@ Polynomial F € P™ of degree n is completely
defined by F(uo), . .., F™ (ug) (for any given uo)

e Enforcing C"~' gives one additional degree of
freedom (= max. continuity)

A. Kolb CG Il — 3.2.1: Catmull-Rom-Splines

cG >

cG >

d

49

d

49

Main Properties of Bézier-Splines g;% ['

Summary
Essential advantages: 08
@ All advantages of the Bézier-curves "
@ Add. control points with fix polynom. degree -
Essential disadvantages: 0
@ Compliance with specific continuity conditions or " § P" (piecewise constant, ¢5)
@ Rather specific curve type (Catmull-Rom) §§
We want to have: “Built-in” continuity with os
@ Maximum continuity, i.e. C*~' for degree n I
e Polynomial F € P™ of degree n is completely) S A W
defined by F (uo), ..., F" (uo) (for any givenug) I <P (piecewise linear,)
e Enforcing C™~' gives one additional degree of 07 a\
freedom (= max. continuity) s [
@ Minimal influence of control points: Piecewise s L
polynomials of degree n with continuity C™! 5 \
span at least n + 1 intervals e T
F € P? (piecewise quadratic, C!)
A. Kolb CG Il — 3.2.1: Catmull-Rom-Splines 29
3.3: B-Spline-Curves g§) [I

Approach (Construction of Quadratic B-Spline Curves)

Idea: Use inner control points C} of a C* continuous quadratic Bézier-spline
as control points

Given: Knot vectorT = {tg,...,tm+3} and de Boor points Dy, ...,D,,

Construction: Sequence D, =Ci A ,: Ay Dy = Cj
D;_o,...,D; defines the j-th
quadratic Bézier segment
C’, j=2,...,mover[tj,tji1]:

j___ A Aj— .
Co T A1 FA; Dj o+ A 1—|—A D;_
I _D.
Cl = Lin a;

Note: Automatic C*-cont.

A. Kolb CGIl - 3.3: B-Spline-Curves 50

Cubic B-Spline Curves 2 u

cG

Approach (Construction of Cubic B-Spline Curves)

Idea: Use A-frame points of C? cubic Bézier-Splines as control points
Given: Knot vectorT = {ty,...,tm+4} and de Boor points Dy, ...,D,,

Construction: Sequence D,_s, ..., D; defines the j-th cubic Bézier segment
C’ over [t,t;i1):
Cl =x 8o —D;
+ A ﬁfijiAHle—l
C% :Aj,l-fi:iAHle—2
T A;, AleAlj—FAAJ_Fl Dj—l
C% — A, 1-|-A Cj o AJ 1+A CJ
Cf =x % Cl+ 4 cl"
o
Note: Automatic C?- A\\.Do
continuity
A. Kolb CGIl - 3.3: B-Spline-Curves 51
Generalization o g§) ['

Objective (What is missing?)
@ Evaluation without detour via Bézier representation, and
@ B-splines for arbitrary degrees n

Observation (Direct Evaluation of Quadratic B-Splines)

Express split ratio (di: Teilungsverhélinis) with respect to neighboring intervals

Evaluate Beézier curve atu € [t,,t 11,
denote points in the de Casteljau
algorithm (segment r, level k) as
(Cp)"

Since we have C7 = D,_; and

T JAYS Ar 1
Co _Ar_1+ATD" R D1
we get
rN1 _ trgp1—u ~r u—tr r__ try1—u tr—1
(Co) =—-5—Co + Ci = A 7a Dr2+t —A — A D D,
PNl _ tpgp1—u o~ u t,n r_ _tryo—u u—ty
<Cl) A 1 + C o Ar+Apgy Dr—l + Ar+Apia DT

A. Kolb CGIl - 3.3: B-Spline-Curves 52

Direct Evaluation of Cubic B-Splines

Observation

Given parameteru € [t,,t,1] and
the reconstructed Bézier-points
0s - - -, C% and the de Casteljau
points (C;)% (all in blue)

A. Kolb

Direct Evaluation of Cubic B-Splines

Observation

Given parameteru € [t,,t.11] and
the reconstructed Bézier-points
0s - - -, Ch and the de Casteljau
points (C;)% (all in blue)
Elongation of the 15! de Casteljau
layer (C3)t, (C7)1, (C5)?! yields
Q@ newpoints D! ,, D! | D!
(green points), which
@ can be computed using split
ratio over 3 segments

A. Kolb

o

fiin

ta—u

u—t

1
A1+Ax+A3

CG Il — 3.3: B-Spline-Curves

:Al

+Ax+A3

D, Dy { ¢
CG Il — 3.3: B-Spline-Curves 53

Dy

Dy

I

53

Comparison of Bézier and B-Spline Construction C% ['

54

Remark

The major difference between Bézier- and B-spline curves is the weighting of
the control points. The de Casteljau algorithm uses constant weights with
respect to the respective segment [t,.,t..1]|. The de Boor algorithm for
B-splines uses varying weights with respect to neighboring segments.

de Boor
(cubic case)

de Casteljau
(cubic case)

D'r73
qun r—1
.—20_. 0
tr—otr_1 tr U tr+1 tr+2 t'r+3 tr—2tr—1 tr U t7‘+1 t'r+2 tr+3
A. Kolb CGIl — 3.3: B-Spline-Curves 54
3.3.1: The de Boor Algorithm I | |

Algorithm (De Boor’s Algorithm, the general case)

The general case is the natural expansion of spanning more segments for
higher degrees.

Given: de Boor points Dy, ..., D,,, a knot vector {tg, ..., tpems1}, t; < tit1
and a parameter u € [t,,, t,;+1]

Relevant foru € [t,,t,.11] are the n + 1 de Boor points
DY=D;,i=r—mn,...,r

Recursion: Affine combinations of neighboring control points:

DF = (1 —of(u)DF} + ofw)DF " i=r—n+k,....r,k=1,...,n
with
o (u) = U=t = u—t; i=r—(mn—=k),...,r,k=1,....n

tit(n—k)+1—ti At + A (n—k)

Result: D(u) = D!

A. Kolb CG Il — 3.3.1: The de Boor Algorithm 55

De Boor’s Algorithm - Another Example

Example

Given: Cubic B-spline with de Boor-points Dy, . ..

7
2
D2

/

Dj

{

&

t4—u

U—tg

ta—t3

ta—t3

&

\

D3

/

b

t4—u

u—t2

t5—u

u—t3

ta—12

ta—1t2

ts—t3

ts—1t3

1I
Dl

4 X

Y 1/
D2

/

&

\

D;

4 R

t4—u u—t1

t5—’lL

’lL—tQ

tﬁ—u ’lL—tg

ta—t1| [ta—11

ts—to

t5—1t2

te—t3| [te—13

D) =D, DY = D,

A. Kolb

0_
1)2 =

D>

0 _ 1y +

D}

ty

ts u ty

CG Il — 3.3.1: The de Boor Algorithm

de Boor Algorithm (Unifom, Cubic Case)

Example

Given: Uniform knot vectort; =4, i =0, ...

,5 and

3

cG

, D, and u € [tg,t4[

3

cG

Do = (1,1), D; = (1,10), Dy = (10,10), D3 = (10,1), u = 10/3, r = 3
Weights: Determination of weights o = af(10/3) =

o& =17/9,

;22 /6<
56/6
2

/ \ /e \
(10)

(e

(1)

A. Kolb

oy =4/9,

(16)

A “w

az =1/9,

a5 = 4/6,

D,

a3 =1/6,

u—t _ 10—37 .

4—k — 12-3k"

Do

s =1/3

D

(¥)

2 3

4

D3
5 6 7 8 9 10

CG Il — 3.3.1: The de Boor Algorithm

d

56

d

57

3.3.2: B-Spline Basis Functions g§) ['

Approach (Quadratic B-Splines Basis Functions)
Goal: A B-spline representation using basis function N*(u), i.e.

=Y DN (u), u € [tn, tm1]

Quadratic Basis Function: For a fix iy we deduce N? via setting
D, =0, i # i, and D,, =

Example: Determine N5 (u) as a piecewise quadratic polynom in the uniform
case (t; = i). Converting to Bézier representation, all C] = 0 but

0.8

C2=C3=Ci=Ci=1C3=1, thusweget ,,
u € [2,3[: N2(u)=C?*(u)=LB2(u) oo
u € [3,4]: N2(u) = C?(u) 03|

=3 (Bo(u) + Bi(w) + Bi(u) 7|
! (

0.1 |

€ [4,5[: N3 (u) = C*(u) = 3B5(u) R T e
A. Kolb CG Il — 3.3.2: B-Spline Basis Functions 58
General B-Spline Curves g§) ['
Obijective

Goal: Basic function as piecewise polynom N (u) with a given degree n € N,
so that

@ Maximum continuity between the curve segments, i.e. C"~'-continuous
for degree n

Q@ Keeping the influence of the control points as small as possible
(locality). This means to keep supp(N;*) as small as possible

supp(N;*) :={u : N (u) # 0}(support, (di: Trager))

Q Partition of unity: > N*(u) = 1, N*(u) > 0 (affine invariance, convex

hull)
5 [totiga] € P

Knot vector: T = {to, e 7tn—i—m—|—1}7 ti < tiy1, t; :
Case n=0: Obviously a sensible definition is N? = x([t;, t;+1[), with

1 eEM - .
X(M)(u) = ¢ characteristic function
0 else

A. Kolb CG Il — 3.3.2: B-Spline Basis Functions 59

Recursive B-Spline Basis Functions g§) ['

Approach (Recursive B-Spline Basis Functions)

NI () resu/ts from the weighted sum of N;*(u) and N}, (u) with linear

h r,n
weights w , W:
74 1 1 08
0.9 /| 1.0 0.9 A\ 1 0.9 l 1 07 FNQ
X / , X \ (! ! N\ (
0 NY () 08 /| wy(u 03 /\ Ny(u) & wi (u) 0s /Y1
0.6 06 // 06 / \ 06 0.5 / \\
05 05 05 / 04
0.4 0.4 * 04 \ 0.4 / — / \
* 03 + o3 * 03 / —}—0'3 / \
.. / / / \
02 0.2 0.2 \ 02 o
0.1 0.1 / \ 0.1 @i
0 0 : 0
° 0 1 2 3 4 5 ° 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
1 1 1 : 1 :
0 0.9 " r0 0.9 1 A oot 7,1/ I\
M) & '@ /) E N oelwy” (u0)
06 g:g \\ g:g /’/ \\ 8:2 \
0.4 * 04 \ 0.4 / \\ * g:g
03 03 \ I
0.2 0.2 \\ 0.2 \\ 0.2
0.1 \ 0.1 \ 0.1
0 0 0 0

Remark

@ Onsupp(N!) wl™ wi"™ rises/falls from 0 to
1, resp. from1 to 0

@ Validis > N =1 (partition of unity, see A
below) and N*(u) > 0 0

0 ¢ b m el
A. Kolb CG Il — 3.3.2: B-Spline Basis Functions 60
Normalized B-Spline-Basic Functions g§) [I

Definition (Normalized B-spline Basis Functions)

Given: Knot vector T' = { Wil o Dty Bgail o - .}, ti <tiy1,t; € R
The knot vector T' is called umform, ift,,1 —t; =const,e.g. t; =1

Case n = 0: Set N,LO =X ([tiati—l—l[)

Recursion n — n + 11 N (u) := wh™(u) - NP (w) + wi (u) - N2 (w) with
n u—t; T ti—{—n—l—l —u

wy™ () = ——— (u) = ————

7)

)
Uiitnal — Uitntl — U

Remark (Partition of Unity)

N[forms a partition of unity within the knot vector, since N*(u) > 0 and by
induction: >~ N? = 1 and

DN w) Z(wlf”<u>zv“<u>+w:f1 na(w)
—Z(") Ne(w) = 1

~"

=1

A. Kolb CG Il — 3.3.2: B-Spline Basis Functions 61

Normalized B-spline-basic functions g% ['

Example

Given: Uniform knot vector T' = {to, ..., thams1}, ti =1
1 if 1,1+ 1

n=0: NO=yliyit1j= 4> Tuelitil

0 ifudli,i+1]

Mw)=i+1—uand N} =w® N2 + w0 - N2,

N} (u) = (u—14) - x[i,3 + 1[+(GE+2—u) - x[i + 1,5 + 2]

u—1 ifueli,i+1]
=<i+2—u fueli+1,i+2]
0 else
1 o / 50 \ 58 /\\
. sl
. o.; / 0.[1) \ 0.[1) / \
] 1]iflo'i 4 5) 1l02 N 5 0 0‘1)72“302.]3\[84 5 0 1]2\[11% 4 5
A. Kolb CG Il — 3.3.2: B-Spline Basis Functions 62
Influence of the Knots ¢ . g§) [I

Property (Influence of the Knots ¢;)

@ k-folded knot ¢, < t; t7,+1 = ... =t x_1 < ;11 reduces the continuity
by k; example Nl,N2,N1 un/form (/eft) andT = {1,2,3,3,4} (right)

0.9 0.9 F /f‘/\\\ /
0.8 0.8 - / \\ /
0.7 0.7 - / “\ /
0.6 0.6 - / \
05 05 1)
0.4 0.4 |
0.3 0.3
0.2 0.2 J
0.1 0.1 /
0 0 !
0 5) 0 1 2 3 4 5]
Q@ T1r=1{0,...,0,1,...,1} delivers:
—_— = s |
(n+ 1) fold (n+ 1) fold 08 |
0.7
0.6
N'=B!'Vi=0,...,n 52 | S
0.3
Q Onlt,, tmi1| NJ,...,N* m > n forms sl
a basis of all piecewise polynomials of O T oa o7 o o |
the n th degree with the continuity given N2 N2 N2 for T = {0,0,0,1,1,1}
by T
CG Il — 3.3.2: B-Spline Basis Functions 63

A. Kolb

Properties of B-Spline-Curves

Remark (Properties of B-spline curves)

3

cG

Polynomial curve: D is a piecewise polynomial curve of degree n with
C™~-transitions for single knots, and C™~* for k-fold knots, respectively

Locality: D, influences the curve only locally, since

supp(NN;*) = {u : Nj*(u) # 0} =]ti, tiyns1[(local support)

Affine invariance & convex hull since Y ;" , N =1 and N* > 0 on
[tna tm-i—l]

Local convex hull: D | proceeds within the hull of D; _,,, ..., D

7

Derivative of a (pieceW/se) po/ynom/al reduces the degree fromn ton — 1

Derivative of B-splines with knot vector T = {to <ty <...<tmant1}-
= D; D T
=Y D;N/ = D'(u) = — o Npt
> DN (w =Y 2N
A. Kolb CG Il — 3.3.2: B-Spline Basis Functions
Knot Insertion (Bohm’s Algorithm) o g;%
Algorithm
Goal: Additional degrees of freedom by adding new contro/ points
Piecewise polynomial over / \ = oI 11D
T:{tmtl;---,tm—i—n—l—l} D7,
/ \ /4 \
is also a piecewise polyn. over / D!,
T = {to, .. tr,t ybrg1 .. tm+n+1} / \
s /D)y \
Control points are calculated via .
de Boor-algorithm for v = ¢* Drof lpo,

Curve split requires (n + 1)-fold knot-insertion, i.e. a comp/ete de Boor:

Knot vector: T* = {tg,...,tp, t*, ..., t" Jtry1 . tmgnt1}
N——

(n+1)-folded

Left curve: T" = {to,... t,,t*,...,t*}, KP:Dq,...,D,_,,D}_, 1,...

, Dy

d

64

d

r

Right curve: T = {t* ..., t*,t,s1.. ., tmins1), KP:D", ..., D! D, ... D,

A. Kolb CG Il — 3.3.2: B-Spline Basis Functions

65

Tensor Product Surfaces g§)

66
Approach

Given: Curve scheme P(u) = zn: P,F;(u)

Variation of the control pointsj:]?’i along another curve

P; =P;(v) =Y Pi;F;(v) results inP(u,v) = Y Y Py F(u)F;(v)
j=0 i=0 j=0

TP-Bézier surface: Usually, polynomial curves of the same degree are used:
C(u,v) =) Y CyBj'(u)B} (v)
i=0 j=0
TP-B-spline surfaces generally have a different number of segments in u-

and v-direction:

My My

D(u,v) =Y > DN/ ()N} (v)
i=0 j=0
A. Kolb CG Il — 3.4: Tensor Product Surfaces 66
Evaluation of Bézier-Surfaces . g§) [I

Algorithm

Dual-step de Casteljau: Separate
analysis for parameter (ug, vg):
Q@ Vi=0,...,n:C;(v) =
>_i—o Cii B} (o)) Css
Q C(uo,v0) = 221 Cilvo) B} (wo) ¢
Notice: The roles of u and v can be
switched

A. Kolb CG Il — 3.4: Tensor Product Surfaces 67

Derivation of Functions in Several Variables . g§) [I

Remark
Derivation of function f:R — R: f/(u) = 2L(u) = lims_,0
F

Derivation of acurve F: R — R? : F/(u) = 2E (u) = lims_,0 -

Partial derivative of a surface F : R? — R3: Derive one variable keeping the
others fixed

f(utd)—f(u)
5 .

F(u+6)—F(u) .

OF .. Flu+é,v) - F(u,v)
a0 = 0 ;
OF .. Fu,v+9) - F(u,v)
By (W) = lm 5

So: Use derivation rules as usual, once for u, once for v.

A. Kolb CG Il — 3.4: Tensor Product Surfaces 68
Properties of TP-BézierSurfaces . gs% [I
Property
Interpolation of vertices: C(0,0) = Cqyy, C(1,0) = C,o,
Derivative:
oC 0 [~ (v . n
%(Ua v) = 9u <; (yzo Ci,; Bj (U)> B; (U)>
(n—1,n)
=n Y (Cip1,;—Ciy) BY ' (w)B} (v)
(i,3)=(0,0)
oC - n
5y (0v) = n; (Ci1,; — Co,j) By (v)
0C

%(0, 0) =N (Cl,() — Co,o)

Global influence of C;;, since B}'(u) - B} (v) # 0 on (u,v) €]0,1[?
Affine invariance & convexe hulls , since

o Brw)BR©) = (X, BFw)(X; Bl (v)) = 1

A. Kolb CG Il — 3.4: Tensor Product Surfaces 69

Properties of TP-B-spline Surface «3 ['

Property

Knot vectors S = {so,s1,---,Smy+n+1}, L = {to,t1, -, tmy+nt1t iN the
direction of u and v, respectively

Local influence of D,;: D;; namipulates D(]s;, Sitn+1[X%t;,tj+n+1[), SiNCE

Nij(u,v) == N;*(u) - N}*(v) = 0V(u,v) €]si; Sitnt1[X]t), tjpntal

Affine invariance and convex hull: are equally valid, since
Z(i,j) Nzn(u)Ngn(U) =1 auf [sn, Sn+my,+1] X [tns tntm,+1]
A. Kolb CG Il — 3.4: Tensor Product Surfaces 70

3.5: Differential Geometry for Curves g§) ['

Remark (Geometric Continuity)

So far: Piecewise curves introduced via C*-continuity

Ambiguity: Geometric form (curve) can be represented by various functions:
For C(u),u € [a,b] and bijektive g : [c,d] — [a, b] results in

D(u) := C(g(u)), u € [¢,d]
the same geometry, but the derivatives are different:
Chain rule: D’ (u) = C'(g(u)) - ¢'(u) # C'(g(u)) ifg'(u) # 1
Geometric continuity: Curves C and D are in D(uq) G*-continuous, if:

di

du’
G*-continuity: D’ (ug) = C’'(g(u
G*-continuity: D" (ug) = C” (g(ug

Jg e C* bijectiv DY (ug) = C(g(ug)), i =0,...,k

0)

Wl) 71 > 0
) - (m)? + C'(9(uo)) - 2, 11,72 >0

//

A. Kolb CG Il — 3.5: Differential Geometry for Curves 7

Geometric Quantities of a Curve g§) ['

Definition

Objective: Determine a local coordination system to a curve (camera path).
Given: Curve C, C?-continuous with C’(u), C” (u) # 0, C'(u) [f C" (u), Yu
Geometric quantities of C in u:

Tangent tc(uo): points in the motion direction: tc(ug) = C'(ug)/ ||C’ (uo)||
Curvature xc(up): Curvature is defined in a plane

span{tc(ug),a} with arbitrary a L tc(uo)
1 : ,
as: kc,a(ug) = —, 14 radius of the best matched circle

a

C(UO)

A. Kolb CG Il — 3.5: Differential Geometry for Curves 72

Geometric quantities of a curve (cont.) g§) ['

73

Property (Geometric quantities of C in)

Normal n¢(ug): corresponds to a with a max-
imum curvature of k¢ a(uo)
It is necessary that nc(ug) €
span{C’(ugp), C" (ug)}.

Curvature: xc(uo) = KC e (ue) (%0)

Bi-normal be(ug): Third vector perpendicular
fo the tangent and normal:

be(uo) := te(uo) X nc(uo)
Frenet-Serret frame: The coordinate system {tc(uo), ic(ug), be(uo)} in
point C(uy).

Curvature vector: kc(ug) - e (uop)
Osculating plane: span{tc(uo), nc(ug)}, the locally best fitting plane

Normal plain: Plain perpendicular to the curve progression, that is
span{nc(up), bc(ug)}

A. Kolb CG Il — 3.5: Differential Geometry for Curves 7

3.5: Differential Geometry for Curves g% ['

Remark

Calculation of the Frenet-Serret Frame The coordination system
{tc(uo), nc(uo), be(uo)} is calculated as follows:

A C'(u
Tangent: tc(ug) = HC’E—US;H
/ "
Binormale: be(u) = C'(ug) x C"(uo)

1€ (uo) x C"(uo)||
since C'(ug) and C" (ug) span the Schmiegeebene
and {tc(uo), nc(uo), be(ug)} and therewith also
{C'(ug), C" (up), be(ug)} are right-handed
Normal: fic(ug) = be(ug) X te(uo)
(no normalization needed, since bc, tc are orthonormal)
|C" (uo) x C"(uo)||

Curvature: rke(ug) =
1€ (o) |I”
A. Kolb CG Il — 3.5: Differential Geometry for Curves 7
3.5: Differential Geometry for Curves . g§) ['

Example (Frenet-Serret Frame of a Spiral)

_ sin u o , cosu y —sinu
Spiral: C(u) = (Cos u); derivatives: C'(u) = (— sin u); C"(u) = <— Ccos u>

U 1 0
cos U COS U
with ||C’(v)|| = v2 and C'(u) x C"(u) = (— sinu) folgt: tc(u) = % (— sinu)
- _ C(u)xC'(u) 1 [co8u X . . _ (—sinu
bo(u) = IC@ x W)~ va\ 1) , fic(u) = be(u) X tc(u) = S
e b
. 1 0
Foru = 7 : tc(%) = E(_f) e
—1 R 1 0 -
10(3) = (0)s be() = 5=(-1) > \\Be
Y

A. Kolb CG Il — 3.5: Differential Geometry for Curves 75

	Freeform Curves and Surfaces
	Bézier-Curves
	Bézier-Splines
	B-Spline-Curves
	Tensor Product Surfaces
	Differential Geometry for Curves

