
Computer Graphics II
4: Polygon Meshes

Computer Graphics and
Multimedia Systems Group

University of Siegen

A. Kolb CG II – 4: Polygon Meshes 76

Structure of this Chapter
77

Structure of Chapter

Subsection 1: Basics of polygon meshes
Subsection 2: Data Structures for Polygon Meshes
Subsection 3: Special Data Structure: Mesh Silhouettes

Motivation
1 Real-time-graphics: Convertion of other geometry types into

polygons/triangles is required
2 Many geometries are only available in form of polygons
3 Until now: Focus of representation (for rendering), e.g. using vertex- and

index-lists
4 But: Tasks like mesh manipulation and mesh processing require efficient

access to the neighborhood of a vertex or face

A. Kolb CG II – 4: Polygon Meshes 77

4.1: Basics of Polygon Meshes
78

Notation (Polygon-Meshes)

Set of vertices: V = {Vi}, i = 1, . . . , NV

Set of edges: E = {Eij},Eij = ViVj , i, j ∈ {1, . . . , NV }, NE = |E|
Set of flat polygons/surfaces: F = {Fi}, i = 1, . . . , NF

Between these entities there exist the following relationships:
Adjacency (contiguous): ViVj connetcs vertices Vi,Vj , polygon F

connects the respective edges and vertices
Valency: The number of edges connected to a vertex

1-Neighbourhood of V: All (directly) connected polygons, edges and
vertices

n-Neighbourhood of V: The 1-neighbourhood of the (n− 1)-neighbourhood

A. Kolb CG II – 4.1: Basics of Polygon Meshes 78

4.1: Basics of Polygon Meshes
79

Example

Cube Vertices, edges and surfaces result in
V = {(1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1), (1,−1,−1), (−1, 1,−1),
(−1,−1, 1), (−1,−1,−1)}
E = {E1,2,E1,3,E1,4,E2,5,E2,6,E3,5,E3,7,E4,6,E4,7,E5,8,E6,8,E7,8}
F = {{1, 3, 5, 2}, {1, 4, 7, 3}, {1, 2, 6, 4}, {8, 5, 3, 7}, {8, 6, 2, 5}, {8, 7, 4, 6}}

V

V1

V2

V3

V4

V5

V6

V7

V8

Links: 1-neighbourhood of V7; right: 1- and 2-neighbourhood

A. Kolb CG II – 4.1: Basics of Polygon Meshes 79

2-Manifold Polygon Meshes
80

Property (2-Manifold Polygon Mesh)

A 2-manifold polygon-mesh has the following properties:
No penetration: Intersection of two polygons is either a vertex, an edge or
empty
On one edge lies an (outer edge) or two polygons (inner edge)
Polygons around a vertex: Open (boundary vertex) or closed fan (inner
vertex)
Mesh is orientable & consists of a single connectivity component

and the Eulers formula is valid: NV −NE +NF = 2(1−NG)−NB

whereby NG # penetrating holes (genus), NB # boundary polylines

VV

V V

Left: Border- and inner vertices and edge, respectively; right: non-manifold
polygon-meshesA. Kolb CG II – 4.1: Basics of Polygon Meshes 80

4.1: Basics of Polygon Meshes
81

Example (Eulers Formula)

Möbuis strip
Cube

(1 hole)
Box

(2 holes)
pyramid

(w.o. bottom)

Euler formula:
Bottomless pyramids:

NV−NE+NF =2−2 ·NG−NB
5− 8+ 4 =2− 0− 1

M"obuis strip:

NV−NE+NF
?
=2−2 ·NG−NB

12− 18+ 6 6=2− 0− 1

Cube with hole:

NV−NE+NF =2−2 ·NG−NB
16− 32+ 16 =2− 2− 0

Cuboid with 2 holes:

NV−NE+NF =2−2 ·NG−NB
28− 58+ 28 =2− 4− 0

A. Kolb CG II – 4.1: Basics of Polygon Meshes 81

4.2: Data Structures for Polygon Meshes
82

Objective

Goal: Applications specific structure data structure, e.g.
Efficient rendering: Only triangles, efficient data transfer
Mesh-editing: Efficient access to polygon data, e.g. neighbours

Separate storage of geometry (vertex coord.) and topology (connectivity)

Reminder (Shared vertex format (also: Indexed face-set))

Application: Rendering
Approach: Explicit storage
of the geometry, referencing
for topology

Optimization in OpenGL:
GL_TRIANGLE_STRIP,

GL_TRIANGLE_FAN,

GL_QUAD_STRIP or
vertex-arrays (CG I)

V3V7

V4 V1

V8

V6 V2

V5

Vertices: Vi = (xi, yi, zi), i = 1, . . . , 8

Surfaces: F = {{1, 3, 5, 2}, {1, 4, 7, 3},
{1, 2, 6, 4}, {8, 5, 3, 7}, {8, 6, 2, 5},
{8, 7, 4, 6}}

A. Kolb CG II – 4.2: Data Structures for Polygon Meshes 82

Winged-Edge Data Structure
83

Approach (Winged-Edge Data Structure)

Store the following information per mesh entity
Vertex Vi: Coordinates & link to an edge
(edge)

Polygon F: Links to an adjacent edge (edge)
Edge Eij: Administers links to the adjacent

Vertices vert1, vert2

Polygons face1, face2

Adjacent edges prev1, next1 for face1
(counterclockwise; analog face2)

V1 V2

vert1 vert2

next2 prev2

next1

prev1

F2

E12

V′

E2,p
E2,p

E1,p E1,n

F1

face1

face2

Remark
Fast access to polygon edges/-corners and edges around a corner
Problem: Orientiented edge forces if-statement; example access to V′:
if(E_12->prev2->vert1 == E_12->vert2) V' = E_12->prev2->vert2;

else V' = E_12->prev2->vert1;

A. Kolb CG II – 4.2: Data Structures for Polygon Meshes 83

Half-Edge Data Structure
84

Approach (Half-Edge Data Structure)

Approach: Same as winged-edge data
structure, only that edge information is
distributed to half edges per each vertex

Data per half edge:
1 Link to end vertex (vert)
2 Link to another half-edge (pair)
3 Link to associated polygon (face)
4 Link to neighbouring half-edges (prev,

next)
Access to V′ without an if-statement:

V' = E_12->next->vert

V′

vert

face

pair

next

prev

V2V1

E12,nF1

F2E21,n

E12

E12,p

E21,p

E21

Compared to winged-edge, the pair links require two additional pointers
per edge, one for each half-edges

A. Kolb CG II – 4.2: Data Structures for Polygon Meshes 84

4.3: Application Example: Mesh Silhouettes
85

Objective (Shadow Volumes)

Given: Polygonal object and a point light source at position L

Wanted: Casting shadows of the object O into the scene
Shadow Volume Approach:

1 Determine silhouettes edges (V1, . . . ,Vk) of O
2 Extrude silhouettes: Qi = L+ α(Vi − L), α large (shadow volume)

L

O
silhouette

V1

V2

L

Qi

Vi

seen from L

3 Rendering: First render scene normally
4 Add shadows to pixel, if frontface of shadow

volume but not backface is visible (use z-
buffer and stencil buffer)

LO

viewer

A. Kolb CG II – 4.3: Application Example: Mesh Silhouettes 85

Silhouette Determination
86

Algorithm

Goal: Given a closed triangle mesh, we want to compute the silhouette egdes
Characterization: Edge Eij , connecting triangles Fk,Fl is part of the
silhouette, if the normals n̂k, n̂l of the triangles point in different directions

w.r.t. the light direction l̂, i.e.
(
n̂k · l̂

)
·
(
n̂l · l̂

)
< 0

Algorithm for given triangle F

1 Collect triangle vertices V1,V2,V3 and
adjacent vertices V4,V5,V6

E_31 = F->edge;

V_1 = E_31->vert;

V_4 = E_31->pair->next->vert;

E_12 = E_31->next;

V_2 = E_12->vert;

V_5 = E_12->pair->next->vert;

E_23 = E_12->next;

V_3 = E_23->vert;

V_6 = E_23->pair->next->vert;

V2 V3

F

V1 V4
V5

V6

edge

pair

next

vert

A. Kolb CG II – 4.3: Application Example: Mesh Silhouettes 86

Silhouette Determination
87

Algorithm

Algorithm (continued)
2 Check if F faces towards L:

n = cross(V_2 - V_1, V_3 - V_1);

if (n*l<0) continue;

Note: Thus each edge is drawn only once.
3 Draw edge Ei,(i+1)%3 if neighbouring

triangle faces backwards
n_31 = cross(V_3 - V_1, V_4 - V_1);

if (n_31*l < 0) draw(E_31);

n_12 = cross(V_1 - V_2, V_5 - V_2);

if (n_12*l < 0) draw(E_12);

n_23 = cross(V_2 - V_3, V_6 - V_3);

if (n_23*l < 0) draw(E_23);

Note: This approach draws also hidden contour
lines.

V2 V3

F

V1 V4
V5

V6

edge

pair

next

vert

Silhouettes on the Stanford bunny

A. Kolb CG II – 4.3: Application Example: Mesh Silhouettes 87

	Polygon Meshes
	Basics of Polygon Meshes
	Data Structures for Polygon Meshes
	Application Example: Mesh Silhouettes

