Computer Graphics Il
4: Polygon Meshes

Computer Graphics and
Multimedia Systems Group

University of Siegen

06)3)

A. Kolb CG Il — 4: Polygon Meshes 76

Structure of this Chapter _ g§) [I
Structure of Chapter

@ Subsection 1: Basics of polygon meshes

@ Subsection 2: Data Structures for Polygon Meshes

@ Subsection 3: Special Data Structure: Mesh Silhouettes

Motivation
@ Real-time-graphics: Convertion of other geometry types into
polygons/triangles is required
@ Many geometries are only available in form of polygons

@ Until now: Focus of representation (for rendering), e.g. using vertex- and
index-lists

Q@ But: Tasks like mesh manipulation and mesh processing require efficient
access to the neighborhood of a vertex or face

A. Kolb CG Il — 4: Polygon Meshes 77

4.1: Basics of Polygon Meshes g§) ['

Notation (Polygon-Meshes)
@ Setofvertices:V ={V;},i=1,...,Ny
@ Setofedges: £ = {Ei;},E;; =V;V;,i,5€{l,...,Ny}, Ng = |&|
@ Set of flat polygons/surfaces: F = {F;},i=1,...,Np

Between these entities there exist the following relationships:

Adjacency (contiguous): V,;V; connetcs vertices V;,V ;, polygon F
connects the respective edges and vertices

Valency: The number of edges connected to a vertex

1-Neighbourhood of V: All (directly) connected polygons, edges and
vertices

n-Neighbourhood of V: The 1-neighbourhood of the (n — 1)-neighbourhood

A. Kolb CG Il — 4.1: Basics of Polygon Meshes 78
4.1: Basics of Polygon Meshes . g§) [I
Example

Cube Vertices, edges and surfaces result in
o V={(1,1,1), (1,1,-1), (1,—-1,1), (—1,1,1), (1,—1,-1),(—1,1,—-1),
(—1,-1,1), (=1, -1, -1)}
@ £E={Ei12,E13,E14,Es5 E26,E35 E37,Ey6,Es7,E55,E¢s,E7s}
o F=1{{1,3,5,2},{1,4,7,3},{1,2,6,4},{8,5,3,7},{8,6,2,5},{8,7,4,6}}

Ve T Vs
|
V4 L V)
i
| 1
ARG I
I/
S
_-Vyg Vs
V7 V3

Links: 1-neighbourhood of V~; right: 1- and 2-neighbourhood

A. Kolb CG Il — 4.1: Basics of Polygon Meshes 79

2-Manifold Polygon Meshes o <2ud

Property (2-Manifold Polygon Mesh)
A 2-manifold polygon-mesh has the following properties:

@ No penetration: Intersection of two polygons is either a vertex, an edge or
empty

@ On one edge lies an (outer edge) or two polygons (inner edge)

@ Polygons around a vertex: Open (boundary vertex) or closed fan (inner
vertex)

@ Mesh is orientable & consists of a single connectivity component

@ and the Eulers formula is valid:| Ny — N + Np =2(1 — Ng) — Np
whereby Nq # penetrating holes (genus), Ng # boundary polylines

&K

Left: Border- and inner vertices and edage, respectively: riaht: non-manifold
A. Kolb CG Il — 4.1: Basics of Polygon Meshes 80

4.1: Basics of Polygon Meshes g§) ['

81

Example (Eulers Formula)

B g

1 s

P 7

(_+ =1
Mébuis strip -

pyramid Cube Box
(w.0. bottom) (1 hole) (2 holes)

Euler formula:

Bottomless pyramids: Cube with hole:
NV_NE+NF :2_2'NG_NB Nv—NE+NF :2—2-Ng—NB
5— 84+ 4 =2-— 0— 1 16— 32+ 16 =2— 2— 0
M"obuis strip: Cuboid with 2 holes:
Ny—Np+Np =2—2. No—Np Ny—Ng+Np =2-2- Ng—Ng
12— 184 6 #2— 0— 1 28— 58+ 28 =2— 4— 0

A. Kolb CG Il — 4.1: Basics of Polygon Meshes 81

4.2: Data Structures for Polygon Meshes g§) ['

Objective

Goal: Applications specific structure data structure, e.g.

@ Efficient rendering: Only triangles, efficient data transfer
@ Mesh-editing: Efficient access to polygon data, e.g. neighbours

Separate storage of geometry (vertex coord.) and topology (connectivity)

Reminder (Shared vertex format (also: Indexed face-set))

Application: Rendering AL Va
Approach: Explicit storage V* | Vi
of the geometry, referencing i
for topology AR
Optimization in OpenGL: Vrle AE
GL_TRIANGLE_STRIP, @ Vertices: V, = (z;,y:,2:),1=1,...,8
GL_TRIANGLE_FAN, @ Surfaces: F = {{1,3,5,2}, {1,4,7,3},
GL_QUAD_STRIP or {1,2,6,4}, {8,5,3,7}, {8,6,2,5},
vertex-arrays (CG) {8,7,4,6}}
A. Kolb CG Il — 4.2: Data Structures for Polygon Meshes 82
Winged-Edge Data Structure g§) [I

Approach (Winged-Edge Data Structure)

Store the following information per mesh entity
Vertex V;: Coordinates & link to an edge E., ™ @ nextl) -
’ \ - 1,n
(edge) _ _ revis facdt ,’
Polygon F: Links to an adjacent edge (edge) N
- // // > V2

Edge E;;: Administers links to the adjacent

@ \ertices vertl, vert2

@ Polygons facel, face2 E2p

@ Adjacent edges previ, next1 for facel
(counterclockwise; analog face2)

s

- —_—_ -

E,
vertl 7 \2 s vert?2
/ N\

AN
next2” w \prev2
e N
a4~ faceZ S

Y
F

Remark
Fast access to polygon edges/-corners and edges around a corner
Problem: Orientiented edge forces if-statement; example access to V':

if(E_12->prev2->vertl == E_12->vert2) V’ = E_12->prev2->vert2;
else V’ = E_12->prev2->vertl;

A. Kolb CG Il — 4.2: Data Structures for Polygon Meshes 83

Half-Edge Data Structure 2 u

84 cG >

Approach (Half-Edge Data Structure)

Approach: Same as winged-edge data
structure, only that edge information is
distributed to half edges per each vertex

Data per half edge:

@ Link to end vertex (vert)
@ Link to another half-edge (pair)
@ Link to associated polygon (face)
Q@ Link to neighbouring half-edges (prev,
next)
Access to V' without an if-statement:
V’? = E_12->next->vert

Compared to winged-edge, the pair links require two additional pointers
per edge, one for each half-edges

A. Kolb CG Il — 4.2: Data Structures for Polygon Meshes 84

4.3: Application Example: Mesh Silhouettes « ['

cG

Objective (Shadow Volumes)

Given: Polygonal object and a point light source at position L
Wanted: Casting shadows of the object O into the scene
Shadow Volume Approach:

@ Determine silhouettes edges (V1,...,Vy) of O
@ Extrude silhouettes: Q; = L + a(V; — L), « large (shadow volume)

Vo Qi
)
N -k smwmeZ::iw N - =K

seen from L

© Rendering: First render scene normally

Q@ Add shadows to pixel, if frontface of shadow
volume but not backface is visible (use z-
buffer and stencil buffer)

viewer

A. Kolb CG Il — 4.3: Application Example: Mesh Silhouettes 85

Silhouette Determination g§) ['

Algorithm
Goal: Given a closed triangle mesh, we want to compute the silhouette egdes

Characterization: Edge E;;, connecting triangles ¥, F,; is part of the
silhouette, if the normals ny, n; of the triangles point in different directions

w.r.t. the light direction1, i.e. <ﬁk : i) : <ﬁl -i) <0

Algorithm for given triangle F

@ Collect triangle vertices V1, Vs, Vs and
adjacent vertices V4, V5, Vg

E_31 = F->edge;

V_1 = E_31->vert;
E_31->pair->next->vert;
2 = E_31->next;

= E_12->vert;

= E_12->pair->next->vert;
3 = E_12->next;

= E_23->vert;
E_23->pair->next->vert;

D W N TN D
|

A. Kolb CG Il — 4.3: Application Example: Mesh Silhouettes 86

Silhouette Determination g§) l'

Algorithm

Algorithm (continued)
© Check ifF faces towards L:

n = cross(V_2 - V_1, V_3 - V_1);
if (n*1<0) continue;

Note: Thus each edge is drawn only once.

Q Draw edge E; (;+1y%3 if neighbouring
triangle faces backwards

n_31 = cross(V_3 - V_1, V_4 - V_1);
if (n_31*1 < 0) draw(E_31);
n_12 = cross(V_1 - V_2, V.5 - V_2);
if (n_12*%1 < 0) draw(E_12);
n_23 = cross(V_2 - V_3, V_6 - V_3);
if (n_23*%1 < 0) draw(E_23);

Note: This approach draws also hidden contour
lines. S/lhouettes on the Stanford bunny

A. Kolb CG Il — 4.3: Application Example: Mesh Silhouettes 87

	Polygon Meshes
	Basics of Polygon Meshes
	Data Structures for Polygon Meshes
	Application Example: Mesh Silhouettes

