Computer Graphics II 4: Polygon Meshes

Computer Graphics and Multimedia Systems Group

University of Siegen

76

A. Kolb

CG II – 4: Polygon Meshes

Structure of this Chapter

Structure of Chapter

- Subsection 1: Basics of polygon meshes
- Subsection 2: Data Structures for Polygon Meshes
- Subsection 3: Special Data Structure: Mesh Silhouettes

Motivation

- Real-time-graphics: Convertion of other geometry types into polygons/triangles is required
- Many geometries are only available in form of polygons
- Until now: Focus of representation (for rendering), e.g. using vertex- and index-lists
- But: Tasks like mesh manipulation and mesh processing require efficient access to the neighborhood of a vertex or face

CG II – 4: Polygon Meshes

4.1: Basics of Polygon Meshes

CG D

79

78

Notation (Polygon-Meshes)

- Set of vertices: $\mathcal{V} = \{\mathbf{V}_i\}, i = 1, \dots, N_V$
- Set of edges: $\mathcal{E} = \{\mathbf{E}_{ij}\}, \mathbf{E}_{ij} = \overline{\mathbf{V}_i \mathbf{V}_j}, i, j \in \{1, \dots, N_V\}, N_E = |\mathcal{E}|$
- Set of flat polygons/surfaces: $\mathcal{F} = {\mathbf{F}_i}, i = 1, \dots, N_F$

Between these entities there exist the following relationships:

Adjacency (contiguous): $\overline{\mathbf{V}_i \mathbf{V}_j}$ connects vertices $\mathbf{V}_i, \mathbf{V}_j$, polygon \mathbf{F} connects the respective edges and vertices

Valency: The number of edges connected to a vertex

1-Neighbourhood of V: All (directly) connected polygons, edges and vertices

n-Neighbourhood of V: The 1-neighbourhood of the (n-1)-neighbourhood

A. Kolb

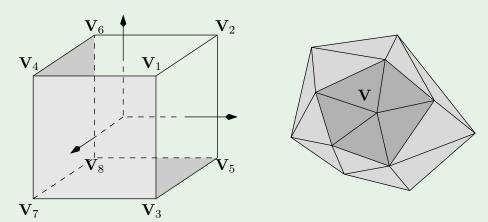
CG II – 4.1: Basics of Polygon Meshes

4.1: Basics of Polygon Meshes

Example

Cube Vertices, edges and surfaces result in

- $\mathcal{V} = \{(1,1,1), (1,1,-1), (1,-1,1), (-1,1,1), (1,-1,-1), (-1,1,-1), (-1,-1,-1), (-1,-1,-1), (-1,-1,-1)\}$
- $\mathcal{E} = \{\mathbf{E}_{1,2}, \mathbf{E}_{1,3}, \mathbf{E}_{1,4}, \mathbf{E}_{2,5}, \mathbf{E}_{2,6}, \mathbf{E}_{3,5}, \mathbf{E}_{3,7}, \mathbf{E}_{4,6}, \mathbf{E}_{4,7}, \mathbf{E}_{5,8}, \mathbf{E}_{6,8}, \mathbf{E}_{7,8}\}$
- $\mathcal{F} = \{\{1, 3, 5, 2\}, \{1, 4, 7, 3\}, \{1, 2, 6, 4\}, \{8, 5, 3, 7\}, \{8, 6, 2, 5\}, \{8, 7, 4, 6\}\}$

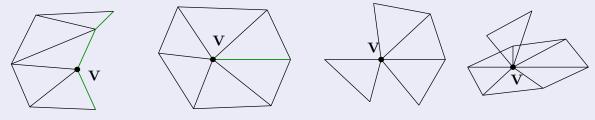


Links: 1-neighbourhood of V_7 ; right: 1- and 2-neighbourhood

2-Manifold Polygon Meshes

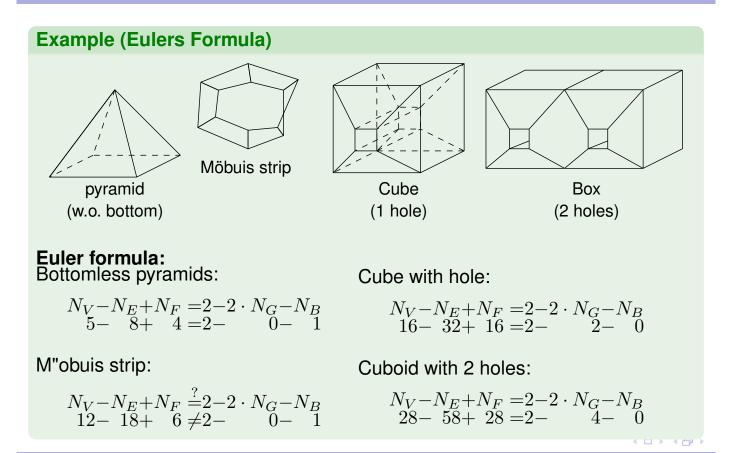
A 2-manifold polygon-mesh has the following properties:

- No penetration: Intersection of two polygons is either a vertex, an edge or empty
- On one edge lies an (outer edge) or two polygons (inner edge)
- Polygons around a vertex: Open (boundary vertex) or closed fan (inner vertex)
- Mesh is orientable & consists of a single connectivity component
- and the Eulers formula is valid: $N_V N_E + N_F = 2(1 N_G) N_B$ whereby N_G # penetrating holes (genus), N_B # boundary polylines



Left: Border- and inner vertices and edge, respectively; right: non-manifold CG II – 4.1: Basics of Polygon Meshes

4.1: Basics of Polygon Meshes



CG II – 4.1: Basics of Polygon Meshes

80

CG D

81

A. Kolb

4.2: Data Structures for Polygon Meshes

Objective

Goal: Applications specific structure data structure, e.g.

- Efficient rendering: Only triangles, efficient data transfer
- Mesh-editing: Efficient access to polygon data, e.g. neighbours

Separate storage of geometry (vertex coord.) and topology (connectivity)

Reminder (Shared vertex format (also: Indexed face-set))

Application: Rendering Approach: Explicit storage of the geometry, referencing for topology

Optimization in OpenGL:

GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUAD_STRIP or vertex-arrays (CG I)

$$\mathbf{V}_{4} \qquad \mathbf{V}_{6} \qquad \mathbf{V}_{2} \\ \mathbf{V}_{4} \qquad \mathbf{V}_{1} \\ \mathbf{V}_{8} \\ \mathbf{V}_{7} \qquad \mathbf{V}_{3} \qquad \mathbf{V}_{5}$$

- Vertices: $V_i = (x_i, y_i, z_i), i = 1, ..., 8$
- Surfaces: $\mathcal{F} = \{\{1, 3, 5, 2\}, \{1, 4, 7, 3\}, \{1, 2, 6, 4\}, \{8, 5, 3, 7\}, \{8, 6, 2, 5\}, \{8, 7, 4, 6\}\}$

A. Kolb

CG II – 4.2: Data Structures for Polygon Meshes

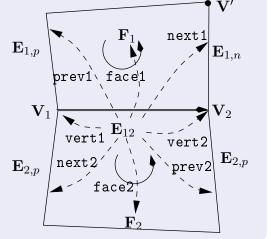
Winged-Edge Data Structure

Approach (Winged-Edge Data Structure)

Store the following information per mesh entity Vertex V_i: Coordinates & link to an edge (edge)

Polygon F: Links to an adjacent edge (edge) **Edge** E_{ij} : Administers links to the adjacent

- Vertices vert1, vert2
- *Polygons* face1, face2
- Adjacent edges prev1, next1 for face1 (counterclockwise; analog face2)



82

Remark

Fast access to polygon edges/-corners and edges around a corner **Problem:** Orientiented edge forces if-statement; example access to V':

if(E_12->prev2->vert1 == E_12->vert2) V' = E_12->prev2->vert2;
else V' = E_12->prev2->vert1;

82

CG D

83

Approach (Half-Edge Data Structure)

Approach: Same as winged-edge data structure, only that edge information is distributed to half edges per each vertex

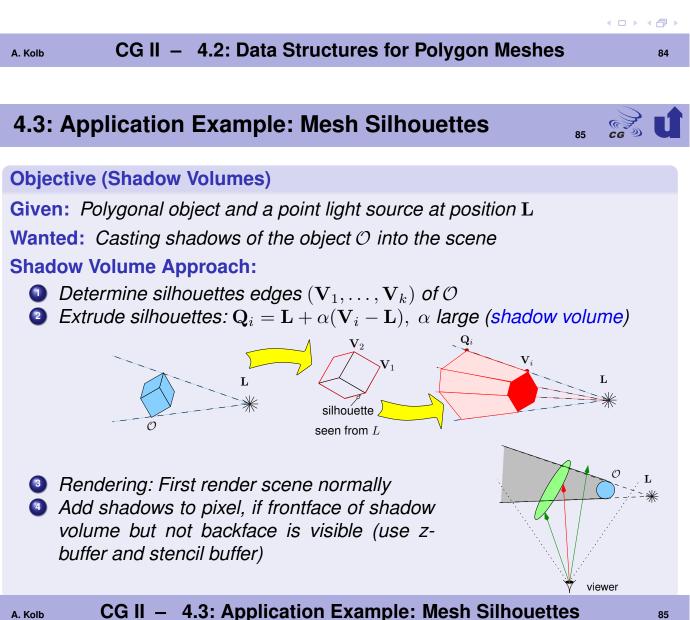
Data per half edge:

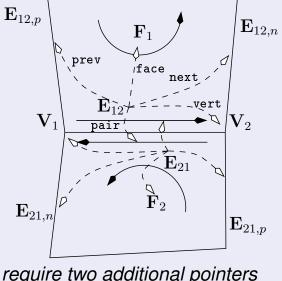
- Link to end vertex (vert)
- 2 Link to another half-edge (pair)
- Link to associated polygon (face)
- Link to neighbouring half-edges (prev, next)

Access to V' without an if-statement:

V' = E 12->next->vert

Compared to winged-edge, the pair links require two additional pointers per edge, one for each half-edges





 \mathbf{V}'

Silhouette Determination

Algorithm

Goal: Given a closed triangle mesh, we want to compute the silhouette egdes

Characterization: Edge \mathbf{E}_{ij} , connecting triangles \mathbf{F}_k , \mathbf{F}_l is part of the silhouette, if the normals $\hat{\mathbf{n}}_k$, $\hat{\mathbf{n}}_l$ of the triangles point in different directions

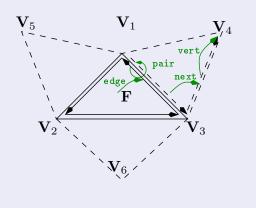
w.r.t. the light direction \hat{l} , i.e.

 $\left(\hat{\mathbf{n}}_k \cdot \hat{\mathbf{l}}\right) \cdot \left(\hat{\mathbf{n}}_l \cdot \hat{\mathbf{l}}\right) < 0$

Algorithm for given triangle \mathbf{F}

 Collect triangle vertices V₁, V₂, V₃ and adjacent vertices V₄, V₅, V₆

E_31	=	F->edge;
V_1	=	E_31->vert;
V_4	=	<pre>E_31->pair->next->vert;</pre>
E_{12}	=	E_{31} ->next;
V_2	=	E_12->vert;
V_5	=	<pre>E_12->pair->next->vert;</pre>
E_23	=	E_{12} ->next;
V_3	=	E_23->vert;
V_6	=	<pre>E_23->pair->next->vert;</pre>



86

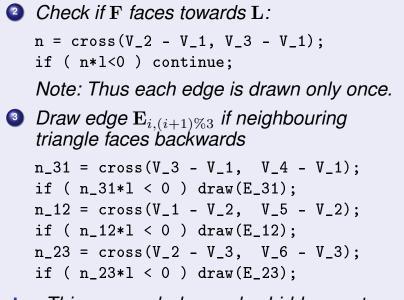
A. Kolb

CG II – 4.3: Application Example: Mesh Silhouettes

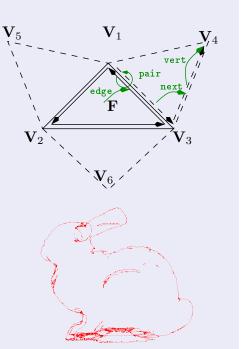
Silhouette Determination

Algorithm

Algorithm (continued)



Note: This approach draws also hidden contour lines.



87

Silhouettes on the Stanford bunny

< 一型

86