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Structure of Chapter

@ Subsection 1: Solid Modeling, i.e. defining compelx shapes using
boolean operations for solids (volumetric objects)

@ Subsection 2: Generation of fractal geometry by recursion processess
@ Subsection 3: Extended version of fractals using Lindenmayer systems
@ Subsection 4: Shape definitions using curve methods
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Representation of Solids g§) l'

Motivation (General Considerations)

So far: Model representation based on Al Q Q:\Q:
polygons, parametric, implicite or subdivision =1 -t
surfaces. = | -,

Idea: Modeling of complex, closed bodies (Q1\Q2) U Qs /
(solids) from primitives using boolean 4
operators. i

Uniqueness Requirement: For each geometry there should only be one
representation

Solid representations can be volume based (all points inside the object) or
surface-based (boundary-representation, b-rep)

Example: Surface vs. volume based representation of a sphere

COS U COS ¥ W COS U COS U —% 3]
S(u,v) = | cosusinv |, S(u,v,w) = [ wcosusinv |, v 6 [—, 7]
sin u w sin u w € [0,1]

Most Common Approach: Polygonal b-reps
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Boolean Operators g§) l'

105

Approach

Goal: Use of Boolean operators Boolean intersection
for the creation of complex ge- '
ometries ' v _

Problem: Standard boolean set A pau P R
operators do not necessarily
create solids from solids Result: Solid  Result: Line Result: Surface

Regularized Boolean Operators: Removal of non-solid results

Binary Construction Tree: Successive application of binary Boolean
operations

|1.2.1.2 Primitive | [1.2.1.1 Primitive]

A. Kolb CG Il — 6.1: Solid Modeling 105



Boolschen Operations 2 u
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Approach (Implementation of Boolean Operations)

Goal: Determination of b-rep after application
of a boolean operation

Segment in Partial Polygons: Cut all
polgons at the intersection lines to the
polygons of other object

Inside-Outside-Classification: Each
resulting partial polygon lies inside or outside Polygonal S -

with reference to the other primitive
Composition of the Solid: i_i ﬁ
AN B: Allinside-polygons of A and B
AU B : Alloutside-polygons of A and B
A\B : '

All outside-polygons of A and Inside-outside-classification

all inside-polygons of B m AnB
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6.2: Fraktale Geometry g§) l'

Approach

Generation of complex, self-similar geometry (hills, plants)

Requirements for the generation of fractal geometry:
@ Initial Element from a Set of Elements
© Recursion: Replace current element with another (more complex)
element using replacement rules
@ Geometric interpretation
Example: Koch Snowflake

Element Set: Here, polygonal strips
Initial Element: Polygonal chain with four edges
Rule: replace each edge of the current polygon with the initial element

VA O I US  P

initial element 1. recursion 4. recursion
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Stochastic Fractals g§) l'

Approach

Stochastic Fractals: Application of random variables in replacement rule
Fractal Mountains:

Set of Elements: Regular 3D-triangular meshes (sketch!)
Initial Element: A random triangle in the x — y—plain
Rule:

@ Divide each triangle into four similar triangles
@ Stochastic perturbance of the new vertices, mainly in z-direction

initial triangle first subdivision second subdivision
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6.3: Lindenmeyer Systems (L-Systems) g§) [I

Approach (Grammar-Based Fractals)

Idea: Use grammar-like recursive application of replacement rules
Basis: Formal languages (see lecture on Algorithm & Data Structures):

Alphabet V': Describes geom. primitives,
tfransformations & stack op. (used for branching)

Words V*: Set of combinations of symbols from V/

Rules: For elements of the alphabet:
a— p(a) € V*, Ya € V or for words:

w = a1asas ... — p(w) = p(a1)p(az)p(as)...

Axiom: Initial element wy € V* of the recursion
Example: Alphabet consisting of:

a draw line (initial direction: up)

+,— change of direction by +22.5°

[,] stack command (push- and pop)
Axiom a and rule p(a) = aa+[+a—a—a]—[—a+a+al,
otherwise p(x) = x
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Interpretation of L-Systems 2 u
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Algorithm (Interpretation of L-Systems)

Geometric Interpretation: Elements of the alphabet represent geometric
primitives, transformations or stack instructions

Algorithm specifically for the previous example:

void InterpretelLSystem ( char* word, Point P, Vector d) {
moveto (P) ; // Startposition
while ( (*word) != EndOfWord ) {
switch ( *word ) {

case ’a’: P =P + d; lineto(P); break;
case ’+’: d = rotate(d, phi); break;
case ’-’: d = rotate(d, -phi); break;
case ’[’:

InterpreteLSystem(word+1l, P, d);
word = FindMatchingBrace(word); // jump to resp. ’]°

moveto (P) ; // last draw pos. before ’[’
break;
case ’]’: return;
}
word ++; // go to next symbol
}
1
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6.4: Curve-Based Techniques g§) [I
Approach

Reminder: TP-surfaces generalize a curve scheme
Problem: Declaration of n - m control points is a time-consuming task
Sweep-surface: Alternative curve approach:
Curves: Move profil-curve S(u) along a path C(v).
Alternative: Variation of the profile-curve S depending on v
Example: Certain curves produce specific classes of surfaces:

Surface of revolution: The path C is a circle
Extrusion: Closed 2D-profile S; path C is often a line.

profil curve extrusion profil curve surface of revolution
vy 4y h

— / ‘
/// ///
\\ |
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6.4: Curve-Based Techniques g§) ['

Example (A Simple Extrusion Shape)
Goal: Polygon approximation of a heart-shaped extrusion shape.
Profile-curve S(u), u € [0, 1] and path-curve C(v), v € [0, 1] given by

st = (04) = (e ), o= ()

Parametric Representation: F(u,v) = (sy(u)>, (u,v) € [0,1]2

Polygonalization:
@ Mesh in the areas of parameters [0, 1]* with a resolution

(Ny +1) x (N, +1):
_ (1B : . 1 1
1B = <jAv>’ i€40,..., Ny}, j€{0,..., N, } with A, = N A, = N
@ Polygons are given by: U (F(P; ;), F(Pit1,5), F(Pit1,j41), F(Ps j41))
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General Extrusion Shapes s &3

Approach
Definition: A general extrusion surface is given by
2D-profile: Plain, closed curves S; : u+ S;(u) € R? u € [0,1], i
Path: curve, along which the profile curves S, are located:
C:v— C(v) eR3 vel0,1]
Mapping: For each S; we addionally need:

@ one focal point M;
@ one path parameter v; € [0, 1] with M;=C(v;) and v;—1 < v; < v;11

Procedure: @ Alignment of the profiles to the path (Frenet-Serret frame)
@ Interpolation between the profiles (e.g. Catmul-Rom splines)

pat\

I
—
S

2D profile

CG Il — 6.4: Curve-Based Techniques 113

A. Kolb



General Extrusion Surface < l'

Algorithm (Polygon-Approximation of an Extrusion Surface)

Sl(u), V1 = 0
Given: @ Path-curve:C: v~ C(v) € R3 v €[0,1] S3(u), vs =
Q@ Plain 2D-profile-curves
S;:urr S;(u) eR?, uel0,1], i=1,...,n with
e Alignment point M
e Path-Parameter v; € [0, 1] with M;=C(v;) Sa(u),v2 = 0.5
e Resolution for path rc and profiles rs
Profile Linearization: Approximation of profiles with
rg points with reference to focal point M, : path profile

Si,j = Sl(u]) — M, € R?

rs

M, is therefore located at the origin

Ofzy
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General Extrusion Surface > "
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Algorithm (Polygon-Approximation of the Extrusion Surface (Cont.))

Fitting of the polygons for profile S;

using the Frenet-Serret frame in C(v;): fitted

polygons

Sf’j = C(Uz) S .’I?ijjflc(vi) i yi,jf)c(v,-) € R3
Catmul-Rom Spline Interpolation of the
points S ;,i =1,...,n by curve S (v)

Linearization of the splines by g
polygonal lines consisting of rc edges

interpolating
splines
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