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6: Modeling Techniques
103

Structure of Chapter

Subsection 1: Solid Modeling, i.e. defining compelx shapes using
boolean operations for solids (volumetric objects)
Subsection 2: Generation of fractal geometry by recursion processess
Subsection 3: Extended version of fractals using Lindenmayer systems
Subsection 4: Shape definitions using curve methods
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Representation of Solids
104

Motivation (General Considerations)

So far: Model representation based on
polygons, parametric, implicite or subdivision
surfaces.

Idea: Modeling of complex, closed bodies
(solids) from primitives using boolean
operators.

(Q1\Q2) ∪Q3

Q1\Q2Q1

Q2

Q3

Uniqueness Requirement: For each geometry there should only be one
representation

Solid representations can be volume based (all points inside the object) or
surface-based (boundary-representation, b-rep)

Example: Surface vs. volume based representation of a sphere

S(u, v) =

(
cosu cos v
cosu sin v

sinu

)
, S(u, v, w) =

(
w cosu cos v
w cosu sin v
w sinu

)
,
u ∈ [−π

2
, π
2
]

v ∈ [−π, π]
w ∈ [0, 1]

Most Common Approach: Polygonal b-reps
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Boolean Operators
105

Approach

Goal: Use of Boolean operators
for the creation of complex ge-
ometries

Problem: Standard boolean set
operators do not necessarily
create solids from solids

Boolean intersection

Result: Solid Result: Line Result: Surface

Regularized Boolean Operators: Removal of non-solid results
Binary Construction Tree: Successive application of binary Boolean
operations

1.1.1 Primitive

1.2.1.2 Primitive

1.2.2 Primitive

1.2.1.1 Primitive

1.1.2 Primitive 1.2.1 Object

1.2 Object1.1 Object

1. Object
Op (1.)

Op. (1.2)Op. (1.1)

Op. (1.2.1)
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Boolschen Operations
106

Approach (Implementation of Boolean Operations)

Goal: Determination of b-rep after application
of a boolean operation

Segment in Partial Polygons: Cut all
polgons at the intersection lines to the
polygons of other object

Inside-Outside-Classification: Each
resulting partial polygon lies inside or outside
with reference to the other primitive

Composition of the Solid:
A
⋂
B : All inside-polygons of A and B

A
⋃
B : All outside-polygons of A and B

A\B : All outside-polygons of A and
all inside-polygons of B

Polygonal segmentation

Inside-outside-classification

B

A ∩B

A
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6.2: Fraktale Geometry
107

Approach

Generation of complex, self-similar geometry (hills, plants)
Requirements for the generation of fractal geometry:

1 Initial Element from a Set of Elements
2 Recursion: Replace current element with another (more complex)

element using replacement rules
3 Geometric interpretation

Example: Koch Snowflake
Element Set: Here, polygonal strips
Initial Element: Polygonal chain with four edges
Rule: replace each edge of the current polygon with the initial element

initial element 1. recursion 4. recursion
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Stochastic Fractals
108

Approach

Stochastic Fractals: Application of random variables in replacement rule
Fractal Mountains:
Set of Elements: Regular 3D-triangular meshes (sketch!)
Initial Element: A random triangle in the x− y−plain
Rule:

Divide each triangle into four similar triangles
Stochastic perturbance of the new vertices, mainly in z-direction

second subdivision�rst subdivisioninitial triangle
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6.3: Lindenmeyer Systems (L-Systems)
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Approach (Grammar-Based Fractals)

Idea: Use grammar-like recursive application of replacement rules
Basis: Formal languages (see lecture on Algorithm & Data Structures):
Alphabet V : Describes geom. primitives,
transformations & stack op. (used for branching)

Words V ∗: Set of combinations of symbols from V

Rules: For elements of the alphabet:
a 7→ p(a) ∈ V ∗, ∀a ∈ V or for words:
ω = a1a2a3 . . . 7→ p(ω) = p(a1)p(a2)p(a3)...

Axiom: Initial element ω0 ∈ V ∗ of the recursion
Example: Alphabet consisting of:

a draw line (initial direction: up)
+,− change of direction by ±22.5◦

[, ] stack command (push- and pop)

Axiom a and rule p(a) = aa+[+a−a−a]−[−a+a+a],
otherwise p(x) = x
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Interpretation of L-Systems
110

Algorithm (Interpretation of L-Systems)

Geometric Interpretation: Elements of the alphabet represent geometric
primitives, transformations or stack instructions

Algorithm specifically for the previous example:
void InterpreteLSystem ( char* word, Point P, Vector d) {
moveto(P); // Startposition
while ( (*word) != EndOfWord ) {
switch ( *word ) {

case 'a': P = P + d; lineto(P); break;
case '+': d = rotate(d, phi); break;
case '-': d = rotate(d, -phi); break;
case '[':
InterpreteLSystem(word+1, P, d);
word = FindMatchingBrace(word); // jump to resp. ']'
moveto(P); // last draw pos. before '['
break;

case ']': return;
}
word ++; // go to next symbol

}
}
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6.4: Curve-Based Techniques
111

Approach

Reminder: TP-surfaces generalize a curve scheme
Problem: Declaration of n ·m control points is a time-consuming task
Sweep-surface: Alternative curve approach:
Curves: Move profil-curve S(u) along a path C(v).
Alternative: Variation of the profile-curve S depending on v

Example: Certain curves produce specific classes of surfaces:
Surface of revolution: The path C is a circle
Extrusion: Closed 2D-profile S; path C is often a line.

y

x

y

xx

z x z

y

profil curve extrusion profil curve surface of revolution
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6.4: Curve-Based Techniques
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Example (A Simple Extrusion Shape)

Goal: Polygon approximation of a heart-shaped extrusion shape.
Profile-curve S(u), u ∈ [0, 1] and path-curve C(v), v ∈ [0, 1] given by

S(u) =

(
sx(u)
sy(u)

)
=

(
cos(2πu) · sin(πu)

cos(2πu)

)
, C(v) =

(
0
0
v

)

Parametric Representation: F(u, v) =

(
sx(u)
sy(u)
v

)
, (u, v) ∈ [0, 1]2

Polygonalization:
Mesh in the areas of parameters [0, 1]2 with a resolution
(Nu + 1)× (Nv + 1):

Pij =
(
i∆u
j∆v

)
, i ∈ {0, . . . , Nu}, j ∈ {0, . . . , Nv} with ∆u =

1

Nu
, ∆v =

1

Nv

Polygons are given by: � (F(Pi,j),F(Pi+1,j),F(Pi+1,j+1),F(Pi,j+1))
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General Extrusion Shapes
113

Approach

Definition: A general extrusion surface is given by
2D-profile: Plain, closed curves Si : u 7→ Si(u) ∈ R2, u ∈ [0, 1], i = 1, . . . , n
Path: curve, along which the profile curves Si are located:
C : v 7→ C(v) ∈ R3, v ∈ [0, 1]

Mapping: For each Si we addionally need:
one focal point Mi

one path parameter vi ∈ [0, 1] with Mi=̂C(vi) and vi−1 < vi < vi+1

Procedure: 1 Alignment of the profiles to the path (Frenet-Serret frame)
2 Interpolation between the profiles (e.g. Catmul-Rom splines)

path

2D pro�le
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General Extrusion Surface
114

Algorithm (Polygon-Approximation of an Extrusion Surface)

Given: 1 Path-curve: C : v 7→ C(v) ∈ R3, v ∈ [0, 1]
2 Plain 2D-profile-curves

Si : u 7→ Si(u) ∈ R2, u ∈ [0, 1], i = 1, . . . , n with
Alignment point Mi

Path-Parameter vi ∈ [0, 1] with Mi=̂C(vi)
Resolution for path rC and profiles rS

Profile Linearization: Approximation of profiles with
rS points with reference to focal point Mi:

Si,j = Si(uj)−Mi ∈ R2

with uj =
j

rS

Mi is therefore located at the origin

S1,1

M1

S2(u), v2 = 0.5

S3(u), v3 = 1

S1(u), v1 = 0

profilepath
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General Extrusion Surface
115

Algorithm (Polygon-Approximation of the Extrusion Surface (Cont.))

Fitting of the polygons for profile Si

using the Frenet-Serret frame in C(vi):

Si,j =
(
xi,j
yi,j

)
7→ S∗

i,j mit

S∗
i,j = C(vi) + xi,jn̂C(vi) + yi,jb̂C(vi) ∈ R3

Catmul-Rom Spline Interpolation of the
points S∗

i,j , i = 1, . . . , n by curve S∗
j (v)

Linearization of the splines by
polygonal lines consisting of rC edges

interpolating
splines

fitted
polygons

S∗
1,1

n̂C

b̂C

t̂C

C(0)

path
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