
Computer Graphics II
7: Computer Animation

Computer Graphics and
Multimedia Systems Group

University of Siegen

A. Kolb CG II – 7: Computer Animation 13

7: Computer Animation
14

Structure of Chapter

Subsection 1: Keyframe Animation
Subsection 1: Interpolation of the Position
Subsection 2: Representation of Orientations
Subsection 3: Quaternions
Subsection 4: Interpolation of Orientation

Subsection 2: Spline-Based Animation
Subsection 1: Path and Speed
Subsection 2: Form Control
Subsection 3: Camera Animation

Subsection 3: Deformations and Morphing
Subsection 1: Freeform Deformations
Subsection 2: Blend Shapes and Morphing

A. Kolb CG II – 7: Computer Animation 14

7: Computer Animation
15

Motivation
Animation = “objects changing in time”, e.g.

1 global position and orientation
2 Motion/change of the object in itself and in relation to other objects, resp.

Hierarchy of approaches to motion-control:

Character reacts to external forces

Character moves

Character walks on straight line

avoiding collisions with others
Character autonomously approaches goal

Geometry

Kinematics

Application

Behavioral simulation

purposeful action
cognitive,

Dynamic Simulation

Kinematics: Study of motion (physics); motion = direct modification of
geometry
Application dependent time-steps⇒ geometry must be determinable at
each point in time.

A. Kolb CG II – 7: Computer Animation 15

General Considerations
16

Notation
Compared to Animated Cartoons: Interpolation of given keyframes:

Cartoon Animation Computer Animation
keyframe artist/choreographer animator

in-betweens drawing-artist algorithm

Basic Procedure: 1 Description of the scene O by time-dependent
parameters (animation parameters) φ1, φ2, . . . , φm

2 Interval Point t: Interpolation of Parameters O(φ1(t), . . . , φm(t))

Animation Parameter: Differentiate between position and orientation

t = 2

t = 1.5

t = 0.8

t = 1

t = 1.5

t = 0 t = 0

t = 3

Time varying parameters:

Center Z, radius r

Time varying parameter:

Direction ~r

t = 2

Orientation: Results from a rotation with reference to a starting position

A. Kolb CG II – 7.1: Keyframe Animation 16

7.1.1: Position Interpolation
17

Approach

The interpolation of position parameters is carried out on the basis of
suitable curve classes.

Specific Task:

Given: Time-position-pairs (ti,Pi), i = 1, . . . , N

Wanted: Curve C : C(ti) = Pi, i = 1, . . . , N

Catmull-Rom Splines:
C1-continuous cubic polynomial curves
heuristic determination of the tangent (manual adjustment if necessary)

Alternative: Using a B-Spline, which interpolate values at the knots ti
requires the solution of a N ×N linear system
piecewise cubic polynomial curves
C2-continuous curves

A. Kolb CG II – 7.1.1: Position Interpolation 17

Euler Angles
18

Definition (Euler Angles)

Sequential rotation around x−, y− & z−axis in local coordinates
Pitch, Yaw, Roll Rotation Rx(φx), Ry(φy), Rz(φz) about x−, y−, z− axis

Sequence: Influences the result⇒ constant sequence, e.g. x, y, z.

Full Rotation for processing sequence
x, y, z as matrix multiplication:

Rφx,φy,φz := Rz(φz) ·Ry(φy) ·Rx(φx)

Ambiguity problem: e.g. Gimbal-lock

R
φx,

π
2 ,φz

=

 0 0 1 0
sin(φx+φz) cos(φx+φz) 0 0
− cos(φx+φz) sin(φx+φz) 0 0

0 0 0 1

Rφx,0,0

Rφx,π2 ,0

x′′ = −z′

y′′ = y′ z′π
2

z′

y

x = x′

φx

y′ z

z′′ = x′ = x

A. Kolb CG II – 7.1.1: Position Interpolation 18

Ambiguity of Euler Angles
19

Property

Note: For animation the representation of the orientation must be
unambiguous

Because: otherwise “random” interpolation results arise
Example: Rπ,0,0 and R0,π,π describe the same orientation

Interpolation paths between R0,0,0 and Rπ,0,0 = R0,π,π are different

Rtπ,0,0 6= R0,tπ,tπ, t ∈]0, 1[

R0,tπ,tπ

initial position

y

y

z

xπ z x π
y

z

x
π

x

z
y

z x

y

x

z

Rtπ,0,0

y

Finding: Euler angles are unsuitable representation for animation

A. Kolb CG II – 7.1.1: Position Interpolation 19

Exkursion: Complex Numbers
20

Definition (Complex Numbers)

General: Complex numbers extend real numbers, so that the root of negative
numbers is defined.

Imaginary Unit: i :=
√
−1 as the solution of x2 = −1

Representation of complex numbers: c = x+ i · y, with x, y ∈ R
The real part of c: Re(c) = x, the imaginary part of c: Im(c) = y

Set symbol: The set of complex numbers is called C
Calculation rules are valid as usual, considering i2 = −1

Addition: c1 + c2 = x1 + i · y1 + x2 + i · y2 = (x1 + x2) + i · (y1 + y2)
⇒ Re(c1 + c2) = x1 + x2 ; Im(c1 + c2) = y1 + y2

Multiplication:
c1 · c2 = (x1 + i · y1) · (x2 + i · y2) = x1 · x2 + i · x1 · y2 + i · y1 · x2 + i2 · y1 · y2
⇒ c1 · c2 = (x1 · x2 − y1 · y2) + i · (x1 · y2 + x2 · y1) (da i2 = −1)
⇒ Re(c1 · c2) = x1 · x2 − y1 · y2 ; Im(c1 · c2) = x1 · y2 + x2 · y1

Addition und multiplication of complex numbers is commutative!

A. Kolb CG II – 7.1.2: Representation of Orientations 20

Exkursion: Complex Numbers
21

Property (Complex Plane)

Complex plane: One can imagine the
complex numbers as points in the complex
plane(dt: Gau"s’sche Zahlenebene) plane:

“Basis vector” are 1 and i

C 3 x+ i · y ↔
(
x
y

)
∈ R2

Length: Analogous to the vector length,
|c|2 = x2 + y2

c = x+ iy

c = x− iy

Im

Re1 2 3−1

i

2i

−i

−2i

x

y

Conjugation: “Reflection” of the vector at the real axis

c = x+ i · y ⇒ c := x − i · y(complex conjugate)

This results in: c · c = (x+ iy) · (x− iy) = x2 − (iy)2 = x2 + y2 = |c|2

A. Kolb CG II – 7.1.2: Representation of Orientations 21

Polar Coordinates
22

Remark
Each c = x+ iy ∈ C can be written as:

c = r · cosα+ r · i sinα, with r = |c|, α ∈ [0, 2π[

Because of cos2 α+ sin2 α = 1 (Pythagoras) is

|c|2 = r2 cos2 α+ r2 sin2 α

= r2(cos2 α+ sin2 α) = r2

Calculation: For c = x+ iy is r =
√
x2 + y2 and

α =arctan2(y, x)

:=

sgn(y) · arctan(
∣∣ y
x

∣∣) x > 0, y 6= 0 (I)
sgn(y) · π2 x = 0, y 6= 0 (II)
sgn(y) · (π − arctan(

∣∣ y
x

∣∣)) x < 0, y 6= 0 (III)
π x < 0, y = 0 (IVa)
0 x > 0, y = 0 (IVb)

y

Re

|c|

x

c = x+ iy

α

Im

arctan(
∣∣ y
x

∣∣) ∈ [0, π2 [

(x, y)

α

(II)

(IVb)(IVa)

(I)(III)

A. Kolb CG II – 7.1.2: Representation of Orientations 22

Rotation with Complex Numbers
23

Approach

Consider the following subset: Z = {c : |c| = 1}
Valid is: 1 = |c| = x2 + y2 ⇒ ∃1α ∈ [0, 2π[: cosα = x ∧ sinα = y
For c1, c2 ∈ Z with ci = cosαi + i · sinαi is (addition theorems)

c1 · c2 = (cosα1 · cosα2 − sinα1 · sinα2)︸ ︷︷ ︸
=cos(α1+α2)

+i (cosα1 · sinα2 + sinα1 · cosα2)︸ ︷︷ ︸
=sin(α1+α2)

= cos(α1 + α2) + i · sin(α1 + α2) ∈ Z
Rotation around φ using cφ = cosφ+i ·sinφ ∈
Z:

Rφ :
C −→ C
c 7→ Rφ(c) = cφ · c

because cφ · c = |c| (cos(α+φ) + i · sin(α+φ))

Exponential Notation of polar coordinates:
c = x+ i · y = |c| (cosα+ i sinα) = |c| eiα

⇒ cφ · c = |c| eiα · eiφ = |c| ei(α+φ)

cφ
sinφ

cosφ

φ

φ

c
cφ · c

A. Kolb CG II – 7.1.2: Representation of Orientations 23

Exponential Notation for Polar Coordinates
24

Remark
Functions like sin, cos, exp are defined by series(dt: Reihen):

cosx =
∞∑
k=0

(−1)k
x2k

(2k)!
, sinx =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
, ex =

∞∑
n=0

xn

n!

Thus complex parameters can be inserted into this function without any
problem.

Insertion of iφ as parameter into the exponential function produces:

eiφ =
∞∑
k=0

(iφ)n

n!
=
∞∑
k=0

(iφ)2k

(2k)!
(even expon.) +

∞∑
k=0

(iφ)2k+1

(2k + 1)!
(odd Expon.)

=

∞∑
k=0

(i2)k · φ2k

(2k)!
+

∞∑
k=0

i(i2)k · φ2k+1

(2k + 1)!
=

∞∑
k=0

(−1)kφ2k

(2k)!
+ i

∞∑
k=0

(−1)kφ2k+1

(2k + 1)!

= cosφ+ i sinφ

A. Kolb CG II – 7.1.2: Representation of Orientations 24

Rotation with Complex Numbers (ctd.)
25

Algorithm

Given: Point P =
(
x
y

)
∈ R2 in the plane and rotation angle φ

Execution of the rotation
1 Interpret P as a complex number in C: z = x+ iy
2 Rotate z in C: z′ = z · eiφ
3 Interpret z′ again as a point in R2:

(
x′

y′

)
∈ R2

Classic Procedure with matrices in 2D:
(
x′

y′

)
=

(
cosφ − sinφ
sinφ cosφ

)(
x
y

)
Rotation with complex numbers in 2D offers no advantages here

...but: Sir William Hamilton (1805-1865) found out:
an extension of complex numbers to 3D is not possible
wheras a generalization for 2n-dimensional spaces exist
Quaternions are generalized complex numbers for 4D-rotations

A. Kolb CG II – 7.1.2: Representation of Orientations 25

Euler Angle vs. Quaternions
26

Example

Euler angle Quaternions
Key position

Different Euler representations
of one (fix) orientation

A. Kolb CG II – 7.1.3: Quaternions 26

7.1.3: Quaternions
27

Definition (Quaternions)

Quaternions have one real and three imaginary components s and x, y, z,
resp.

Notation: With imaginary units i, j, k:

q := s+ ix+ jy + kz = (s, ~v), ~v = (x, y, z) (set symbol: H)

with i2 = j2 = k2 = −1, ij = k, jk = i, ki = j and ji = −k, kj = −i, ik = −j

Addition: q1 + q2 = (s1 + s2, ~v1 + ~v2)

Multiplication: From application of the above rule follows:

q1q2 = (s1 + ix1 + jy1 + kz1)(s2 + ix2 + jy2 + kz2)

= s1s2 − (x1x2 + y1y2 + z1z2) + i(s1x2 + s2x1 + y1z2 − y2z1)

+j(s1y2 + s2y1 + z1x2 − z2x1) + k(s1z2 + s2z1 + x1y2 − x2y1)

= (s1s2 − (~v1 · ~v2), s1~v2 + s2~v1 + ~v1 × ~v2)

Asymmetry ij = −ji, jk = −kj, ki = −ik ⇒ multipl. it not commutative.

A. Kolb CG II – 7.1.3: Quaternions 27

Properties of Quaternions
28

Property (Quaternions)

Conjugate: q := (s,−~v); conjugation is not commutative:
q
1
q
2

= (s1s2 − (~v1 · ~v2),−s1~v2 − s2~v1 + ~v1 × ~v2︸ ︷︷ ︸
=−~v2×~v1

) = (q
2
q
1
)

Length:
qq = (s2 + (~v · ~v), s~v − s~v + ~v × (−~v)︸ ︷︷ ︸

=~0

) ∈ R,
∣∣q∣∣ =

√
qq =

√
s2 + (~v · ~v)

Unit Quaternion: Quaternion with a length of 1, i.e.
∣∣q∣∣ = 1

Angle: For
∣∣∣q

1

∣∣∣ =
∣∣∣q

2

∣∣∣ = 1 we get:

cos(∠(q
1
,q

2
)) = Re(q

1
q
2
) = s1s2 + (~v1 · ~v2)

This corresponds to the inner product of the respective 4D-vectors
(s1, x1, y1, z1) und (s2, x2, y2, z2)

A. Kolb CG II – 7.1.3: Quaternions 28

Rotation using Quaternions
29

Approach
Problem: Unit quaternions describe rotations in 4D
Questions when using quaternions in 3D

How is 3D embedded into 4D?
How can 4D-rotations be transferred to 3D?

The Following Quaternion represents 3D-rotation (axis v̂, angle φ):
q = (cos φ2 , sin

φ
2 v̂),

∣∣q∣∣ = 1

Computation of the Rotation for a given point P ∈ R3:
1 Transformation of P in 4D: q

P
= (0, ~p), ~p is the position vector of P

2 Rotation computation: q′
P

= qq
P
q

3 Interpretation in 3D: q′
P

= (0, Rv̂,φ(P)), i.e. s′ = 0, Rv̂,φ(P) = (x′, y′, z′)

Composition of the rotations corresponds to the quaternion multiplication:

Rq
2

(
Rq

1
(P)
)

=̂q
2
(q

1
q
P
q
1
)q

2
= (q

2
q
1
)q

P
(q

1
q
2
) = (q

2
q
1
)q

P
(q

2
q
1
)=̂Rq

2
q
1
(P)

A. Kolb CG II – 7.1.3: Quaternions 29

Rotation using Quaternions
30

Example

Rotation of P = (1, 2, 0) by v̂ = (1, 0, 0) with angle π (result: (1,−2, 0)).

q = (cos(π/2), sin(π/2)v̂) = (0, (1, 0, 0)); q
P

= (0, (1, 2, 0)); q = (0,−(1, 0, 0))

Calculation of Rq(P) in two steps:

1 q
P
q =

(
−

((
1
2
0

)
·

(
−1
0
0

))
,

((
1
2
0

)
×

(
−1
0
0

)))
= (1, (0, 0, 2))

2 q(q
P
q) =

(
−

((
1
0
0

)
·

(
0
0
2

))
,

(
1
0
0

)
+

(
1
0
0

)
×

(
0
0
2

))
= (0, (1,−2, 0))

Result: Quaternion (0, (1,−2, 0)) corresponds to the point (1,−2, 0)

Note: The resulting quaternion must always have a real part of 0.

A. Kolb CG II – 7.1.3: Quaternions 30

Ambiguity of Quaternions
31

Observation
Obviously q and −q produce the same result:

1 Multiplication with regard to real factors is commutative, e.g.
a · (s, ~v) · b = (ab s, ab~v) = ab(s, ~v)

2 Thus: Rq(P)=̂qq
P
q = (−1)2qq

P
q = (−q)q

P
(−q)=̂R−q(P)

Analysis: −q = (− cos φ2 ,− sin φ
2 v̂) corresponds

to rotation around −v̂ with an angle of 2π − φ,
since

cos(π − φ
2) = − cos(φ2) and sin(π − φ

2) = sin(φ2)

⇒ −q = (cos(π − φ
2), sin(π − φ

2)(−v̂))

Ambiguity: Both rotations deliver the same re-
sult! There are no further ambiguities!

2π − φ

−v̂
v̂

p

A. Kolb CG II – 7.1.3: Quaternions 31

7.1.3: Quaternions
32

Example (Ambiguity with Euler Angles)

Reminder: For Euler angles applies: Rπ,0,0 = R0,π,π

Question: What does to look like for quaternions?

Rπ,0,0 =̂ Rq
x

with q
x

= (0, (1, 0, 0)), since sin
π

2
= 1, cos

π

2
= 0

R0,π,0 =̂ Rq
y

with q
y

= (0, (0, 1, 0)), R0,0,π=̂Rq
z

with q
z

= (0, (0, 0, 1))

R0,π,π =̂ Rq
z
·Rq

y
= Rq

z
q
y

= R−q
x

since (0, (0, 0, 1)) · (0, (0, 1, 0)) =

(
0,

(
0
0
1

)
×

(
0
1
0

))
= (0, (−1, 0, 0))

which defines the same orientation as Rq
x

= (0, (1, 0, 0))

Result: Rπ,0,0 and R0,π,π correspond to the same unit quaternion
q = (0, (1, 0, 0))

A. Kolb CG II – 7.1.3: Quaternions 32

Quaternions↔ Rotation Matrices
33

Algorithm

Conversion of the unit quaternion q = (cos φ2 , sin
φ
2 v̂) = (s, (x, y, z)) into the

rotation matrix R:

Rq =

(
1− 2(y2 + z2) 2xy − 2sz 2xz + 2sy

2xy + 2sz 1− 2(x2 + z2) 2yz − 2sx
2xz − 2sy 2yz + 2sx 1− 2(x2 + y2)

)
(1)

Conversion of the rotation matrix R = (rij)i,j=1,...,3 in unit quaternion. From
the eq. (1) we get

r11 + r22 + r33 = 3− 4(x2 + y2 + z2) = 3− 4(1− s2) = −1− 4s2

⇒s = ± 1
2

√
r11 + r22 + r33 + 1

r32 − r23 = 4sx⇒ x =
r32 − r23

4s
, analog: y =

r13 − r31
4s

, z =
r21 − r12

4s

Notice: Positive and accordingly negative s deliver two quaternions q+,q−,
but q− = −q+ describe the same orientation!

A. Kolb CG II – 7.1.3: Quaternions 33

7.1.4: Interpolation of Orientation
34

Problem
Goal: Interpolation of orientations, in Euler notation:

Given: Time-orientation-pairs (ti, R~φi),
~φi =

(
φix, φ

i
y, φ

i
z

)
, i = 1, . . . , N

Wanted: Interpolation function R with R(ti) = R~φi , i = 1, . . . , N

Interpolation with Euler Angles: Direct interpolation e.g. with B-splines
Problem: Result depends on the representation of the orientation.

Interpolation with Quaternions:
Reminder: Rotations are described by 4D
unit quaternions

Problem: Interpolated quaternions must be
again unit quaternions.
Bézier, B-Splines do not achieve this, i.e.:
C(ti) ∈ R4, ‖C(ti)‖ = 1 6⇒ ‖C(u)‖ = 1.

Normalization delivers non-uniform step size q
1

q
2

linear interpolation

normalized quaternion

A. Kolb CG II – 7.1.4: Interpolation of Orientation 34

Spherical Linear Interpolation (slerp)
35

Approach (Spherical Linear Interpolation)

Goal: “Linear” interpolation on a sphere resp. a great circle arc
Given: P,Q,R on the unit circle (i.e. on the great circle), R “between” P and
Q: α = ∠(P,Q), β = ∠(P,R).

Solution: Relation between angle and point:

R =
sin(α− β)

sinα
P +

sin(β)

sinα
Q

Therefore, for β = tα, t ∈ [0, 1] we get

R(t) =
sin((1− t)α)

sinα
P +

sin(tα)

sinα
Q

R
P

β
α Q

Linear Interpolation of Rotations by spherical interpolation of unit
quaternions:

q(t) =
sin((1− t)α)

sinα
q
1

+
sin(tα)

sinα
q
2
, cosα = s1s2 + (~v1 · ~v2)

A. Kolb CG II – 7.1.4: Interpolation of Orientation 35

7.1.4: Interpolation of Orientation
36

Remark (Details to Interpolation on circular arcs)

Given: P,Q,R points on the unit circle, R “between” P and Q, α = ∠(P,Q)

Assumption: Points lie in the plane and P = (1, 0)
⇒ Q = (cosα, sinα) and R = (cosβ, sinβ)

Wanted: Linear combination R = aP + bQ

Verify, whether a = sin(α−β)
sinα and b = sin(β)

sinα “do the job”

aP + bQ =
sin(α− β)

sinα
·
(

1
0

)
+

sinβ

sinα
·
(

cosα
sinα

)
=

(
sinα cos β−cosα sin β

sinα + sin β·cosα
sinα

0 + sinβ

)
=
(

cosβ
sinβ

)
= R

A. Kolb CG II – 7.1.4: Interpolation of Orientation 36

Spherical Spline Interpolation
37

Algorithm

Evaluation of Bézier- and B-spline curves is based on successive affine
combinations from control points (de Casteljau, de Boor)

Question: Is this also true for Catmull-Rom-Splines with the interpolation
points of Pi, i.e. are Bézier-control points affine combinations of the Pi?

Specifically: i-th Bézier-segment with control points Ci
0, . . . ,C

i
3 and

interpolation points Pi−1, . . . ,Pi+2:

Ci
0 = Pi, Ci

3 = Pi+1(end points), ~ti = 1
2 (Pi+1 −Pi−1) (tangents)

Ci
1 = Pi + 1

3
~ti = Pi + 1

6 (Pi+1 −Pi−1) = 1
6

[
2
(
1
2Pi + 1

2Pi+1

)
−Pi−1

]
+ 5

6Pi

analog Ci
2 = Pi+1 − 1

3
~ti+1 = 1

6

[
2
(
1
2Pi+1 + 1

2Pi
)
−Pi+2

]
+ 5

6Pi+1

Evaluation of Catmul-Rom splines involves only affine combi-
nations

Spherical Catmull Rom Spline: Use slerp-operation instead of affine
combinations yields a curve that proceeds on the sphere.

A. Kolb CG II – 7.1.4: Interpolation of Orientation 37

Spherical Spline Interpolation (cont.)
38

Approach

Given: A quaternion sequence that is to be interpolated: q
1
, . . . ,q

n

Question: Which representative of Rq
i

is to be chosen, q
i

or −q
i
?

Analogy to the Unit Circle: The smaller angle represents the “short”
distance.

Rule: Adopt the quaternion q
i+1

if

∠(q
i
,q
i+1

) > π
2 ⇔ Re(q

i
q
i+1

) < 0⇒ q
i+1
← −q

i+1

in sequential manner i = 1, i = 2, . . . , i = n− 1

Result: The resulting sequence has the prop-
erty ∠(q

i
,q
i+1
≤ π

2

α

q
1

q
2

A. Kolb CG II – 7.1.4: Interpolation of Orientation 38

7.2: Spline-Based Animation
39

Approach (Spline Based Animation)

Keyframe Animation: Parameter states defined at key-times, calculation of
interpolation functions (splines)

Spline Based: Direct defintion and manipulation of spline curves
Questions: 1 Where is spline based animation useful?

+: Motion of a body through space (intuitive trajectory)
–: The fingertip of a swinging arm of a walking character in world space
(no intuitive motion path)

2 How does time-reference come into play (no more keyframe!)?
3 Important: Uniform sampling of u does not create uniform motion along

a curve
⇒ Goal: Positioning along the curve by means of the path length

C

A. Kolb CG II – 7.2: Spline-Based Animation 39

7.2.1: Path and Speed
40

Goal: Motion of an object along a curve
Spatial Motion Path of the object

C(u) :
R −→ R3

u 7→ (x(u), y(u), z(u))

Distance Function: Distance travelled on the
path at time t: s(t) :

R −→ R
t 7→ s(t)

Goal: Motion of the object along C, so that until
time t the distance s(t) has been travelled.

Arc Length Function lC(u) measures the length
of the path C from starting point C(u0) until C(u)

Distinguish: Modeling parameters u (motion
path) and time t (distance function)

t

Distance Function

s(t)

u0 u

Motion Path

lC(u)

C(u0)

C(u)

A. Kolb CG II – 7.2.1: Path and Speed 40

Determination of the Arc Length
41

Algorithm

Given: Motion path C(u) with start and end parameters u0 and u, resp.
Estimation of the arc length lC(u) using the length of a polygonal line

lC(u) ≈ lNC (u) =
N−1∑
i=0

‖C(ui+1)−C(ui)‖ , whith ui = u0+i∆N , ∆N =
u− u0
N

Exact Solution via limit, i.e. infinite many sample points

lNC (u) =

N−1∑
i=0

‖C(ui+1)−C(ui)‖ =

N−1∑
i=0

∥∥∥C(ui+1)−C(ui)

∆N

∥∥∥∆N
N−→∞

=

∫ u

u0

∥∥C′(τ)
∥∥ dτ

Implementation: Generally integral not solvable⇒ estimation with Nk = 2k

C(uki)

C(uki+1)

C(uk+1
2(i+1)+1)

C(uki+2)

lNkC

C(uk+1
2i+1) l

Nk+1

C Abort, in case of
small accuracy gain:
l
Nk+1

C − lNkC < ε

A. Kolb CG II – 7.2.1: Path and Speed 41

Parameter Determination for a Curve-Point
42

Approach (Determination of Parameter u (Fixed Path-Curve))

Observation: The computation of lC is dominated by the evaluation of C
Approach for a fixed path-curve: Storage of lC(u) in Look-Up Table

1 Storage of lC(ui) for equidistant parameters ui
2 Storage of u∗i for equidistante arc length
⇒ more efficient access to desired u-parameter

Hint: Calculation of u∗i by bisection via the values ui, li

u0
u1
u2

0

l1

u
u0 u1 u2

Variante 1:

∆ ∆

l1 + l2

Variante 2:

u∗2u∗1

ui = u0 + i ·∆

0

l∗1
l∗2

u∗0
u∗1
u∗2

li = ‖C(ui)−C(ui−1)‖

C∆∗

l∗i = lC(u∗i)

l∗i+1 − l∗i = ∆∗

A. Kolb CG II – 7.2.1: Path and Speed 42

Parameter Determination for a Curve-Point
43

Approach (Determination of the parameter u (general case))

Task: For the given path function s and time t: For which parameter value u
does lC(u) = s(t) apply

Approach: Seek root of g(u) = lC(u)− s(t)
Note: lC(u) is monotonically increasing⇒ unique root of g(u).

Newton’s Method determines root of g(u):

Initial: Parameter u0
Iteration: Determine tangent at g(ui):

hi(u) = g(ui) + g′(ui)(u− ui)
ui+1 is root of hi(u):

ui+1 = ui −
g(ui)

g′(ui)
= ui −

lC(ui)− s(t)
‖C′(ui)‖

since

g′(u) =
d

du

(∫ u

u0

‖C′(τ)‖ dτ − s(t)
)

= ‖C′(u)‖
h1(u) = g(u0) + g′(u0) (u− u0)

u1 = u0 − g(u0)
g′(u0)

g(u) = lC(u)− s(t)

g(u)

u0

u

A. Kolb CG II – 7.2.1: Path and Speed 43

7.2.2: Form Control
44

Remark
So Far: Control of the curve progression limited to
Bézier-curves/B-spline: Placement of control points
Bézier-splines/Catmull-Rom splines: Placement of interpolation points
and choice/estimation of tangents

Problem: Many applications require other means of control, e.g. the
definition of a path function

Example: Constant acceleration - constant speed - constant delay

s(t)

tconst. speed decelerationacceleration

Goal: Improved possibilities for animation-spezific cpntrol

A. Kolb CG II – 7.2.2: Form Control 44

Ease-In/Ease-Out Functions
45

Objective

Definition of an Ease-In/Ease-Out function:

ease(t) =

{
“soft acceleration” for t ∈ [0, 12]

“soft deceleration” for t ∈ [12 , 1]

Approach (Sinus-Ease-Function)

Concept: Sinus displays on [−π2 ,
π
2] the desired behaviour

Definition: Adopted to t ∈ [0, 1]: easesin(t) = 1
2 sin(tπ − π

2) + 1
2 ∈ [0, 1]

Adoption to specific time interval and/or speed by scaling of parameters
Example: Acceleration from 0 to v0 in the period from t = 0 to t = t0:

easev0,t0sin (t) = 4v0t0
π easesin

(
t

2t0

)
, i.e. t ∈ [0, t0]⇒ t

2t0
∈ [0, 12]

Velocity v(t) =
(
easev0,t0sin

)′
(t) = 4v0t0

2π cos
(
tπ
2t0
− π

2

)
π
2t0

= v0 cos

(
π

2t0
(t− t0)

)
=⇒ v(t0) = v0

A. Kolb CG II – 7.2.2: Form Control 45

Parabolic Ease-Function
46

Approach

Concept: Use a constant acceleration, i.e.
constant acceleration (a = 1)=⇒ linear velocity =⇒ quadratic path function

easeparabol(t) =

{
2t2 falls t ∈ [0, 12]

1− 2(1− t)2 falls t ∈ [12 , 1]

Notice: Adaptation of the acceleration/delay must consider that
(easesin)′(0.5) = 1 6= (easeparabol)

′(0.5) = 2

Comparison:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Sinus-Ease-Function Parabolic Ease-Function

A. Kolb CG II – 7.2.2: Form Control 46

7.2.3: Camera Animation
47

Reminder: Frenet-Serret frame definies local coordinates for curves (camera
path)

Problem: Straight lines have no curvature, thus the Frenet frame is
undefined.

Interpolation of Frames for u ∈ [0, 1], if the frame for u ∈ {0, 1} is known

n̂C(0)

t̂C(0)

b̂C(1)

n̂C(1)

t̂C(1)

n̂C(u)

t̂C(u)

b̂C(u)b̂C(0)

φ
Tangent: t̂C(u) = t̂C(0) = t̂C(1)

Normal: n̂C(u) = Rt̂C
(u · φ)n̂C(0)

B-normal: b̂C(u) = Rt̂C
(u · φ)b̂C(0)

with cosφ = (n̂C(0) · n̂C(1))

Problem: Extreme motions, e.g. meanders like paths, exhibit many points of
inflection(dt: Wendepunkte), which lead to flipped normals
Example of a curve with flipped normal vectores:

A. Kolb CG II – 7.2.3: Camera Animation 47

Alternative Approaches for Camera Alignment
48

Local coordinates: Orthogonal vectores {̂l, û, ŵ = l̂× û} with viewing
direction l̂ and up-vector û in the curve point C(u)

Determination of l̂: Focal point F:
l̂ = (F−C(u))/ ‖F−C(u)‖
Look-ahead direction (secant):

l̂ = (C(u+δ)−C(u))/ ‖C(u+ δ)−C(u)‖

Determination of û: Global
up-vector e.g. y-axis

~w = l̂×

(
0
1
0

)
, ŵ =

~w

‖~w‖
, û = ŵ×l̂

Up vector through 2nd path U(u)

~w = l̂×(U(u)−C(u)), ŵ = ~w
‖~w‖ , û = ŵ×l̂

C(u)

l̂

C(u+ δ)

look-ahead

C(u)

F

l̂

C(u)

U(u)

up-vector path

l̂

ŵ = l̂×y
‖l̂×y‖

y

global up-vector

û = ŵ × l̂

focal point

A. Kolb CG II – 7.2.3: Camera Animation 48

7.3: Deformations and Morphing
49

Notation (Deformationen, Warping, Morphing)

Deformation: Modification of complex objects (e.g. bending or twisting) by
non-affine transformation of the surrounding space.
Image Warping refers to in-plane deformations of images.

Morphing: Combination of several objects (or modified variations of an
object) resulting in mixed geometries/shapes.
Blend shapes: Morphing applied to several instances of a modified geometry.

Original objects Deformed objects Original Warped image
(black: deform. control mesh)
(green: deformatied space)

A. Kolb CG II – 7.3: Deformations and Morphing 49

7.3.1: Free Form Deformations (FFD)
50

Notation
Deformations (also called space-warp) map a space onto itself:

D :
R2 −→ R2

P 7→ D(P)
respectively D :

R3 −→ R3

P 7→ D(P)

Reference cuboid Q: Deformation D is applied relative to a reference cuboid
(respectively quad in 2D):

Q = [xmin, xmax]× [ymin, ymax] in 2D resp. in 3D
Q = [xmin, xmax]× [ymin, ymax]× [zmin, zmax]

Normalized Coordinates: Transform P = (x, y, z) ∈ Q into
TN (P) = (u, v, w) ∈ [0, 1]3:

P =

(
x
y
z

)
∈ Q⇒ TN (P) =

(
u
v
w

)
=

(
(x− xmin)/(xmax − xmin)
(y − ymin)/(ymax − ymin)
(z − zmin)/(zmax − zmin)

)
∈ [0, 1]3

A. Kolb CG II – 7.3.1: Free Form Deformations (FFD) 50

Freeform Deformation (FFD), 2D
51

Approach (General Idea of FFDs)

Aim: Free distortion of space i.e. of objects in Q
Initially: Map the reference cuboid Q identical to itself using a planar Bézier
surface C(u, v).

Deformation: Modification of the control points in the plane defines the
deformation

Deformation
(inner columns moved)identity mapping

Deformation

deformed space

(deformed) objects

Bézier control grid

(1. & 3. crow moved)

A. Kolb CG II – 7.3.1: Free Form Deformations (FFD) 51

Freeform Deformation (cont.)
52

Approach (Setting the Initial Control Points)

Goal: Set (2D) Bézier control points Cij , so that no deformation occurs, i.e.

D(P) = D(x, y) =
n∑

i,j=0

CijB
n
i (u)Bnj (v) = P for P ∈ Q, (u, v) = TN (P)

Note: Here (u, v) = TN (P) ∈ [0, 1] are used as Bézier-parameters
2D and 3D Bézier Control Points are initially set to:

Cij =

((
1− i

n

)
xmin + i

nxmax(
1− j

n

)
ymin + j

nymax

)
Cijk =

(1− i
n

)
xmin + i

nxmax(
1− j

n

)
ymin + j

nymax(
1− k

n

)
zmin + k

nzmax

resulting in the required identity mapping (no deformation)

3D-case: Analog to the 2D Bézier surfaces we can set up tri-variat
Bézier-volumes

A. Kolb CG II – 7.3.1: Free Form Deformations (FFD) 52

7.3.2: Blend Shapes and Morphing
53

Approach (Temporal Shape Blending)

Concept: Direct application of the interpolation techniques to geometries
⇒ Floating transition between shapes

Initial Situation: Control points Pi i = 1, . . . , k of an object are known for
several points in time t1, . . . , tn: Pi(t1), . . . ,Pi(tn), i = 1, . . . , k

Procedure: Interpolation delivers Pi(t) for any t, thus the geometry can be
determined at any time, resulting in a blending over time.

A. Kolb CG II – 7.3.2: Blend Shapes and Morphing 53

Morphing using Affine Combinations
54

Approach (Parameter Based Shape Bedning)

Use shape prototypes (blend shapes) and combine/blend them by means of
affine-combinations.
Initial Situation: Control points Pi
of an object which are known for key
positions 1, . . . , k: P1

i , . . . ,P
k
i .

Approach: Affine combination: For
blend weights αj with

∑n
j=0 αj = 1

we get:

Pi = Pi(α1, . . . , αk) =
k∑
j=0

αkPj

Animation: Vary the bleind weights
αk over the time: αi(t)

P1
1

P1
2

P2
1

P2
2

P2(α1, α2, α3)

P1(α1, α2, α3)

P3
1

P3
2

A. Kolb CG II – 7.3.2: Blend Shapes and Morphing 54

Morphing-Example
55

Example

Initial Situation: 3 prototype facess with (“cheerful”, “frightened”, “scared”)
Animation: Modification of the blend weights over time, from cheerful (t = 0)
over frightened (t = 1) to scared (t = 2).

t0 1 2

spline interpolation:

affine combinations:

(1, 0, 0)
key position 1 key position 3

(0, 0, 1)

key position 2
(0, 1, 0)

(.7, .1, .2)

(.33, .33, .33)

(.2, .7, .1)

(.1, .2, .7)

Note: Key positions have been placed at different locations in order to
visualize the animation in one image.

A. Kolb CG II – 7.3.2: Blend Shapes and Morphing 55

Further Morphing Applications
56

Application (Image Morphing)

Color: Besides form, color etc. can also be blended/morphed
Example: Morphing of an image

1 Warping (FFD) puts pixels in relation: (x, y) = Dinit(x, y)→ Dend(x, y)
⇒ Bézier-control points for initial and final images Cinit

ij (initial), Cend
ij

2 Intermediate image (time t) by interpolation of control points & color:

Ct
ij = (1− t) ·Cinit

ij + t ·Cend
ij ⇒ Dt

I(Dt(x, y)) = (1− t) · I(D0(x, y)) + t · I(D1(x, y))

I(x0, y0) I(D1(x0, y0))I(Dt(x0, y0))

A. Kolb CG II – 7.3.2: Blend Shapes and Morphing 56

	Computer Animation
	Keyframe Animation
	Spline-Based Animation
	Deformations and Morphing

