Computer Graphics II 7: Computer Animation

Computer Graphics and Multimedia Systems Group

University of Siegen

CG

14

13

A. Kolb

CG II – 7: Computer Animation

7: Computer Animation

Structure of Chapter

- Subsection 1: Keyframe Animation
 - Subsection 1: Interpolation of the Position
 - Subsection 2: Representation of Orientations
 - Subsection 3: Quaternions
 - Subsection 4: Interpolation of Orientation
- Subsection 2: Spline-Based Animation
 - Subsection 1: Path and Speed
 - Subsection 2: Form Control
 - Subsection 3: Camera Animation
- Subsection 3: Deformations and Morphing
 - Subsection 1: Freeform Deformations
 - Subsection 2: Blend Shapes and Morphing

7: Computer Animation

Motivation

Animation = *"objects changing in time", e.g.*

global position and orientation

Motion/change of the object in itself and in relation to other objects, resp.

15

Hierarchy of approaches to motion-control:

Application				
			cognitive, purposeful action	Character autonomously approaches goal avoiding collisions with others
	Behavioral simulation		oral simulation	Character walks on straight line
	Dynamic Simulation			Character reacts to external forces
Kinematics				Character moves
Geometry				

Kinematics: • Study of motion (physics); motion = direct modification of geometry

 Application dependent time-steps ⇒ geometry must be determinable at each point in time.

A. Kolb

CG II – 7: Computer Animation

General Considerations

Notation

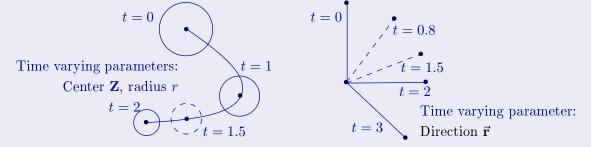
Compared to Animated Cartoons: Interpolation of given keyframes:

	Cartoon Animation	Computer Animation	
keyframe	artist/choreographer	animator	
in-betweens	drawing-artist	algorithm	

Basic Procedure: ① Description of the scene \mathcal{O} by time-dependent parameters (animation parameters) $\phi_1, \phi_2, \dots, \phi_m$

2 Interval Point t: Interpolation of Parameters $\mathcal{O}(\phi_1(t), \dots, \phi_m(t))$

Animation Parameter: Differentiate between position and orientation



Orientation: Results from a rotation with reference to a starting position

CG II – 7.1: Keyframe Animation

< 🗇

15

7.1.1: Position Interpolation

Approach

The interpolation of position parameters is carried out on the basis of suitable curve classes.

Specific Task:

Time-position-pairs $(t_i, \mathbf{P}_i), i = 1, \dots, N$ Given: Curve $\mathbf{C}: \mathbf{C}(t_i) = \mathbf{P}_i, i = 1, \dots, N$ Wanted:

Catmull-Rom Splines:

- C¹-continuous cubic polynomial curves
- heuristic determination of the tangent (manual adjustment if necessary)

Alternative: Using a B-Spline, which interpolate values at the knots t_i

- requires the solution of a $N \times N$ linear system
- piecewise cubic polynomial curves
- C²-continuous curves

A. Kolb

CG II – 7.1.1: Position Interpolation

Euler Angles

Definition (Euler Angles)

Sequential rotation around x - y - & z - axis in *local coordinates Pitch, Yaw, Roll* Rotation $R_x(\phi_x), R_y(\phi_y), R_z(\phi_z)$ about x - y - z - axis

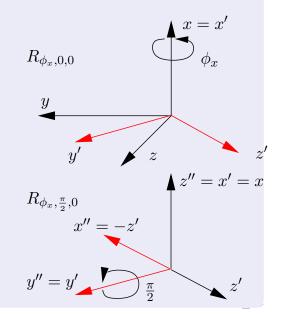
Sequence: Influences the result \Rightarrow constant sequence, e.g. x, y, z.

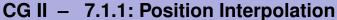
Full Rotation for processing sequence x, y, z as matrix multiplication:

$$R_{\phi_x,\phi_y,\phi_z} := R_z(\phi_z) \cdot R_y(\phi_y) \cdot R_x(\phi_x)$$

Ambiguity problem: e.g. Gimbal-lock

$$R_{\phi_x,\frac{\pi}{2},\phi_z} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ \sin(\phi_x + \phi_z) & \cos(\phi_x + \phi_z) & 0 & 0 \\ -\cos(\phi_x + \phi_z) & \sin(\phi_x + \phi_z) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$





CG D

18

Ambiguity of Euler Angles

Property

Note: For animation the representation of the orientation must be unambiguous

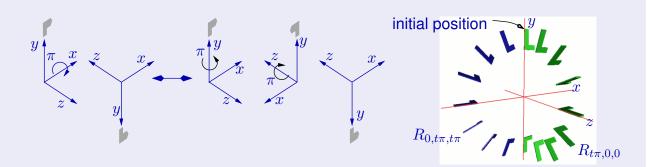
Because: otherwise "random" interpolation results arise

Example: • $R_{\pi,0,0}$ and $R_{0,\pi,\pi}$ describe the same orientation

• Interpolation paths between $R_{0,0,0}$ and $R_{\pi,0,0} = R_{0,\pi,\pi}$ are different

 $R_{t\pi,0,0} \neq R_{0,t\pi,t\pi}, t \in]0,1[$

19



Finding: Euler angles are unsuitable representation for animation

A. Kolb

CG II – 7.1.1: Position Interpolation

Exkursion: Complex Numbers

Definition (Complex Numbers)

General: Complex numbers extend real numbers, so that the root of negative numbers is defined.

Imaginary Unit: $i := \sqrt{-1}$ as the solution of $x^2 = -1$

Representation of complex numbers: $c = x + i \cdot y$, with $x, y \in \mathbb{R}$ The real part of c: $\mathfrak{Re}(c) = x$, the imaginary part of c: $\mathfrak{Im}(c) = y$

Set symbol: The set of complex numbers is called \mathbb{C}

Calculation rules are valid as usual, considering $i^2 = -1$

Addition:
$$c_1 + c_2 = x_1 + i \cdot y_1 + x_2 + i \cdot y_2 = (x_1 + x_2) + i \cdot (y_1 + y_2)$$

 $\Rightarrow \mathfrak{Re}(c_1 + c_2) = x_1 + x_2; \quad \mathfrak{Im}(c_1 + c_2) = y_1 + y_2$

Multiplication:

A. Kolb

 $\begin{aligned} c_1 \cdot c_2 &= (x_1 + i \cdot y_1) \cdot (x_2 + i \cdot y_2) = x_1 \cdot x_2 + i \cdot x_1 \cdot y_2 + i \cdot y_1 \cdot x_2 + i^2 \cdot y_1 \cdot y_2 \\ \Rightarrow c_1 \cdot c_2 &= (x_1 \cdot x_2 - y_1 \cdot y_2) + i \cdot (x_1 \cdot y_2 + x_2 \cdot y_1) \quad \text{(da } i^2 = -1\text{)} \\ \Rightarrow \Re \mathfrak{e}(c_1 \cdot c_2) &= x_1 \cdot x_2 - y_1 \cdot y_2 ; \quad \Im \mathfrak{m}(c_1 \cdot c_2) = x_1 \cdot y_2 + x_2 \cdot y_1 \end{aligned}$

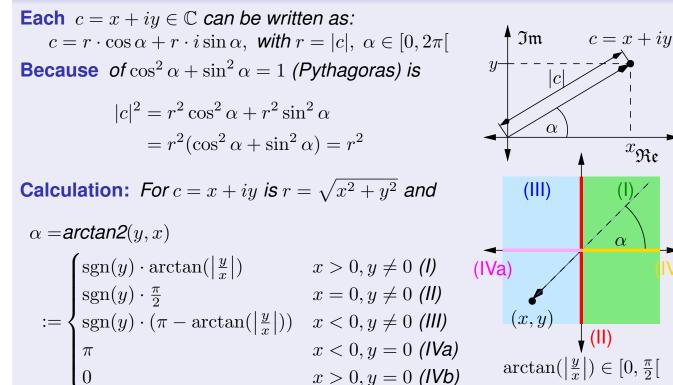
Addition und multiplication of complex numbers is commutative!

19

Polar Coordinates

Remark

A. Kolb



Length: Analogous to the vector length, $|c|^2 = x^2 + y^2$

Conjugation: "Reflection" of the vector at the real axis

$$c = x + i \cdot y \Rightarrow \overline{c} := x - i \cdot y$$
 (complex conjugate)

CG II – 7.1.2: Representation of Orientations

 $^{-1}$

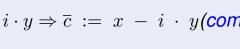
-i

2i

This results in:
$$c \cdot \overline{c} = (x+iy) \cdot (x-iy) = x^2 - (iy)^2 = x^2 + y^2 = |c|^2$$

21

```
CG
22
```



plane(dt: Gau"s'sche Zahlenebene) plane: • "Basis vector" are 1 and i

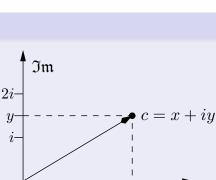
C

Cor ine the complex numbers as points in the complex

$$i = x + i \cdot y \leftrightarrow \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$$

Property (Complex Plane)

Exkursion: Complex Numbers



 $\dot{2}$

x

3 Re

• $\overline{c} = x - iy$

Rotation with Complex Numbers

Approach

Consider the following subset: $\mathcal{Z} = \{c : |c| = 1\}$

- Valid is: $1 = |c| = x^2 + y^2 \Rightarrow \exists_1 \alpha \in [0, 2\pi[: \cos \alpha = x \land \sin \alpha = y]$
- For $c_1, c_2 \in \mathcal{Z}$ with $c_i = \cos \alpha_i + i \cdot \sin \alpha_i$ is (addition theorems)

$$c_{1} \cdot c_{2} = \underbrace{(\cos \alpha_{1} \cdot \cos \alpha_{2} - \sin \alpha_{1} \cdot \sin \alpha_{2})}_{=\cos(\alpha_{1} + \alpha_{2})} + i \underbrace{(\cos \alpha_{1} \cdot \sin \alpha_{2} + \sin \alpha_{1} \cdot \cos \alpha_{2})}_{=\sin(\alpha_{1} + \alpha_{2})}$$

$$= \cos(\alpha_{1} + \alpha_{2}) + i \cdot \sin(\alpha_{1} + \alpha_{2}) \in \mathcal{Z}$$
Rotation around ϕ using $c_{\phi} = \cos \phi + i \cdot \sin \phi \in \mathcal{Z}$:
 $R_{\phi} : \overset{\mathbb{C}}{c} \longrightarrow \overset{\mathbb{C}}{\to} \overset{\mathbb{C}}{R_{\phi}(c)} = c_{\phi} \cdot c$
because $c_{\phi} \cdot c = |c| (\cos(\alpha + \phi) + i \cdot \sin(\alpha + \phi))$
Exponential Notation of polar coordinates:
 $c = x + i \cdot y = |c| (\cos \alpha + i \sin \alpha) = |c| e^{i\alpha}$

$$\Rightarrow \qquad \boxed{c_{\phi} \cdot c = |c| e^{i\alpha} \cdot e^{i\phi} = |c| e^{i(\alpha + \phi)}}$$

CG II – 7.1.2: Representation of Orientations

Exponential Notation for Polar Coordinates

Remark

Functions like sin, cos, exp are defined by series(dt: Reihen):

$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}, \quad \sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}, \quad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Thus complex parameters can be inserted into this function without any problem.

Insertion of $i\phi$ as parameter into the exponential function produces:

$$\begin{split} e^{i\phi} &= \sum_{k=0}^{\infty} \frac{(i\phi)^n}{n!} = \sum_{k=0}^{\infty} \frac{(i\phi)^{2k}}{(2k)!} \text{ (even expon.)} + \sum_{k=0}^{\infty} \frac{(i\phi)^{2k+1}}{(2k+1)!} \text{ (odd Expon.)} \\ &= \sum_{k=0}^{\infty} \frac{(i^2)^k \cdot \phi^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{i(i^2)^k \cdot \phi^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} \frac{(-1)^k \phi^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} \frac{(-1)^k \phi^{2k+1}}{(2k+1)!} \\ &= \cos \phi + i \sin \phi \end{split}$$

23

CG D

Rotation with Complex Numbers (ctd.)

Algorithm

Given: Point $\mathbf{P} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ in the plane and rotation angle ϕ

Execution of the rotation

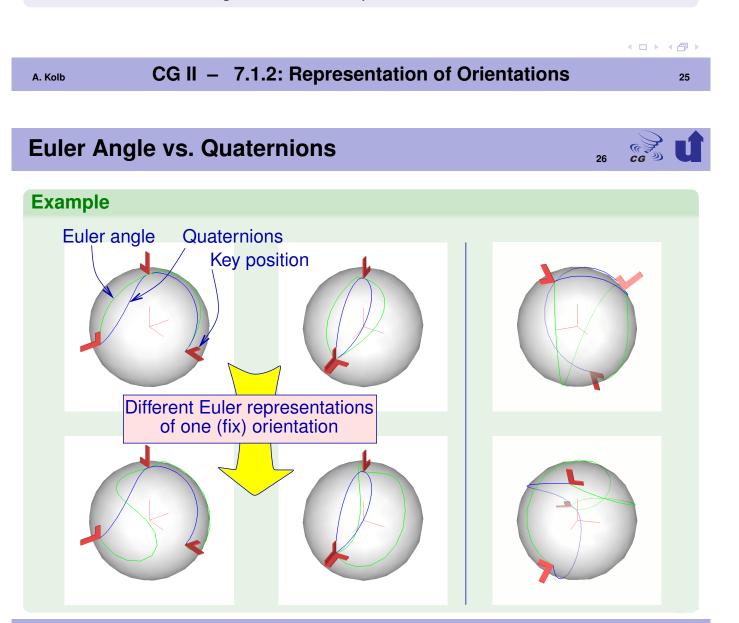
- **1** Interpret **P** as a complex number in \mathbb{C} : z = x + iy
- 2 Rotate z in \mathbb{C} : $z' = z \cdot e^{i\phi}$

3 Interpret z' again as a point in \mathbb{R}^2 : $inom{x'}{y'} \in \mathbb{R}^2$

Classic Procedure with matrices in 2D: $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ Rotation with complex numbers in 2D offers no advantages here

...but: Sir William Hamilton (1805-1865) found out:

- an extension of complex numbers to 3D is not possible
- wheras a generalization for 2n-dimensional spaces exist
- Quaternions are generalized complex numbers for 4D-rotations



7.1.3: Quaternions

Definition (Quaternions)

Quaternions have one real and three imaginary components s and x, y, z, resp.

Notation: With imaginary units i, j, k:

 $\underline{\mathbf{q}} := s + ix + jy + kz = (s, \vec{\mathbf{v}}), \ \vec{\mathbf{v}} = (x, y, z) \quad \text{(set symbol: } \mathbb{H}\text{)}$ with $i^2 = j^2 = k^2 = -1, \ ij = k, \ jk = i, \ ki = j \text{ and } ji = -k, \ kj = -i, \ ik = -j$

Addition: $q_1 + q_2 = (s_1 + s_2, \vec{v}_1 + \vec{v}_2)$

Multiplication: From application of the above rule follows:

$$\underline{\mathbf{q}_{1}\mathbf{q}_{2}} = (s_{1} + ix_{1} + jy_{1} + kz_{1})(s_{2} + ix_{2} + jy_{2} + kz_{2})
 = s_{1}s_{2} - (x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}) + i(s_{1}x_{2} + s_{2}x_{1} + y_{1}z_{2} - y_{2}z_{1})
 + j(s_{1}y_{2} + s_{2}y_{1} + z_{1}x_{2} - z_{2}x_{1}) + k(s_{1}z_{2} + s_{2}z_{1} + x_{1}y_{2} - x_{2}y_{1})
 = (s_{1}s_{2} - (\vec{\mathbf{v}}_{1} \cdot \vec{\mathbf{v}}_{2}), s_{1}\vec{\mathbf{v}}_{2} + s_{2}\vec{\mathbf{v}}_{1} + \vec{\mathbf{v}}_{1} \times \vec{\mathbf{v}}_{2})$$

Asymmetry ij = -ji, jk = -kj, $ki = -ik \Rightarrow$ multipl. it *not commutative*.

A. Kolb

CG II – 7.1.3: Quaternions

Properties of Quaternions

Property (Quaternions)

Conjugate:
$$\underline{\overline{\mathbf{q}}} := (s, -\vec{\mathbf{v}})$$
; conjugation is not commutative:
 $\underline{\overline{\mathbf{q}}}_1 \underline{\overline{\mathbf{q}}}_2 = (s_1 s_2 - (\vec{\mathbf{v}}_1 \cdot \vec{\mathbf{v}}_2), -s_1 \vec{\mathbf{v}}_2 - s_2 \vec{\mathbf{v}}_1 + \underbrace{\vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2}_{=-\vec{\mathbf{v}}_2 \times \vec{\mathbf{v}}_1}) = \overline{(\underline{\mathbf{q}}_2 \underline{\mathbf{q}}_1)}$

Length:

$$\underline{\mathbf{q}}\overline{\mathbf{q}} = (s^2 + (\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}), s\vec{\mathbf{v}} - s\vec{\mathbf{v}} + \underbrace{\vec{\mathbf{v}} \times (-\vec{\mathbf{v}})}_{\vec{\mathbf{q}}}) \in \mathbb{R}, \ |\underline{\mathbf{q}}| = \sqrt{\underline{\mathbf{q}}\overline{\mathbf{q}}} = \sqrt{s^2 + (\vec{\mathbf{v}} \cdot \vec{\mathbf{v}})}$$

Unit Quaternion: Quaternion with a length of 1, i.e. $|\underline{\mathbf{q}}| = 1$ Angle: For $|\underline{\mathbf{q}}_1| = |\underline{\mathbf{q}}_2| = 1$ we get:

$$\cos(\angle(\underline{\mathbf{q}}_1,\underline{\mathbf{q}}_2)) = \mathfrak{Re}(\underline{\mathbf{q}}_1\overline{\underline{\mathbf{q}}}_2) = s_1s_2 + (\vec{\mathbf{v}}_1\cdot\vec{\mathbf{v}}_2)$$

This corresponds to the inner product of the respective 4D-vectors (s_1, x_1, y_1, z_1) und (s_2, x_2, y_2, z_2)

28

Approach

Problem: Unit quaternions describe rotations in 4D

Questions when using quaternions in 3D

- How is 3D embedded into 4D?
- How can 4D-rotations be transferred to 3D?

The Following Quaternion represents 3D-rotation (axis $\hat{\mathbf{v}}$, angle ϕ):

 $\underline{\mathbf{q}} = (\cos \frac{\phi}{2}, \sin \frac{\phi}{2} \hat{\mathbf{v}}), \ |\underline{\mathbf{q}}| = 1$

Computation of the Rotation for a given point $\mathbf{P} \in \mathbb{R}^3$:

- **1** Transformation of **P** in 4D: $\underline{q}_{\mathbf{P}} = (0, \vec{\mathbf{p}})$, $\vec{\mathbf{p}}$ is the position vector of **P**
- 2 Rotation computation: $\underline{\mathbf{q}}_{\mathbf{P}}' = \underline{\mathbf{q}}_{\mathbf{P}} \overline{\underline{\mathbf{q}}}$

3 Interpretation in 3D: $\underline{\mathbf{q}'_{\mathbf{P}}} = (0, R_{\hat{\mathbf{v}},\phi}(\mathbf{P}))$, i.e. $s' = 0, R_{\hat{\mathbf{v}},\phi}(\mathbf{P}) = (x', y', z')$

Composition of the rotations corresponds to the quaternion multiplication:

$$R_{\underline{\mathbf{q}}_2}\left(R_{\underline{\mathbf{q}}_1}(\mathbf{P})\right) \stackrel{\circ}{=} \underline{\mathbf{q}}_2(\underline{\mathbf{q}}_1\underline{\mathbf{q}}_{\mathbf{P}}\overline{\underline{\mathbf{q}}_1})\overline{\underline{\mathbf{q}}_2} = (\underline{\mathbf{q}}_2\underline{\mathbf{q}}_1)\underline{\mathbf{q}}_{\mathbf{P}}(\overline{\underline{\mathbf{q}}}_1\overline{\underline{\mathbf{q}}}_2) = (\underline{\mathbf{q}}_2\underline{\mathbf{q}}_1)\underline{\mathbf{q}}_{\mathbf{P}}\overline{(\underline{\mathbf{q}}_2\underline{\mathbf{q}}_1)} \stackrel{\circ}{=} R_{\underline{\mathbf{q}}_2\underline{\mathbf{q}}_1}(\mathbf{P})$$

A. Kolb

CG II – 7.1.3: Quaternions

Rotation using Quaternions

Example

Rotation of
$$\mathbf{P} = (1, 2, 0)$$
 by $\hat{\mathbf{v}} = (1, 0, 0)$ with angle π (result: $(1, -2, 0)$).

$$\underline{\mathbf{q}} = (\cos(\pi/2), \sin(\pi/2)\hat{\mathbf{v}}) = (0, (1, 0, 0)); \ \underline{\mathbf{q}}_{\mathbf{P}} = (0, (1, 2, 0)); \ \overline{\mathbf{q}} = (0, -(1, 0, 0))$$

Calculation of $R_q(\mathbf{P})$ in two steps:

$$\underline{\mathbf{q}}_{\mathbf{P}} \underline{\overline{\mathbf{q}}} = \left(-\left(\begin{pmatrix} 1\\2\\0 \end{pmatrix} \cdot \begin{pmatrix} -1\\0\\0 \end{pmatrix} \right), \begin{pmatrix} \begin{pmatrix} 1\\2\\0 \end{pmatrix} \times \begin{pmatrix} -1\\0\\0 \end{pmatrix} \end{pmatrix} \right) = (1, (0, 0, 2))$$

$$\underline{\mathbf{q}} (\underline{\mathbf{q}}_{\mathbf{P}} \underline{\overline{\mathbf{q}}}) = \left(-\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix} \cdot \begin{pmatrix} 0\\0\\2 \end{pmatrix} \right), \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0 \end{pmatrix} \times \begin{pmatrix} 0\\0\\2 \end{pmatrix} \right) = (0, (1, -2, 0))$$

Result: Quaternion (0, (1, -2, 0)) corresponds to the point (1, -2, 0)**Note:** The resulting quaternion must always have a real part of 0.

30

29

29

CG II – 7.1.3: Quaternions

Ambiguity of Quaternions

Observation

Obviously q and -q produce the same result:

1 Multiplication with regard to real factors is commutative, e.g. $a \cdot (s, \vec{\mathbf{v}}) \cdot b = (ab \, s, ab \vec{\mathbf{v}}) = ab(s, \vec{\mathbf{v}})$

2 Thus:
$$R_{\underline{\mathbf{q}}}(\mathbf{P}) = \underline{\mathbf{qq}}_{\mathbf{P}} \overline{\mathbf{q}} = (-1)^2 \underline{\mathbf{qq}}_{\mathbf{P}} \overline{\mathbf{q}} = (-\underline{\mathbf{q}}) \underline{\mathbf{q}}_{\mathbf{P}} (-\overline{\mathbf{q}}) = R_{-\underline{\mathbf{q}}}(\mathbf{P})$$

Analysis: $-\underline{\mathbf{q}} = (-\cos\frac{\phi}{2}, -\sin\frac{\phi}{2}\hat{\mathbf{v}})$ corresponds to rotation around $-\hat{\mathbf{v}}$ with an angle of $2\pi - \phi$, since

$$\cos(\pi - \frac{\phi}{2}) = -\cos(\frac{\phi}{2}) \text{ and } \sin(\pi - \frac{\phi}{2}) = \sin(\frac{\phi}{2})$$
$$\Rightarrow -\underline{\mathbf{q}} = (\cos(\pi - \frac{\phi}{2}), \sin(\pi - \frac{\phi}{2})(-\hat{\mathbf{v}}))$$

Ambiguity: Both rotations deliver the same result! There are no further ambiguities!

32

A. Kolb

CG II - 7.1.3: Quaternions

7.1.3: Quaternions

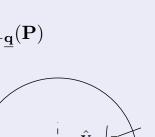
Example (Ambiguity with Euler Angles)

Reminder: For Euler angles applies: $R_{\pi,0,0} = R_{0,\pi,\pi}$ **Question:** What does to look like for quaternions?

$$\begin{aligned} R_{\pi,0,0} &\triangleq R_{\underline{\mathbf{q}}_{x}} \text{ with } \underline{\mathbf{q}}_{x} = (0,(1,0,0)), \text{ since } \sin\frac{\pi}{2} = 1, \cos\frac{\pi}{2} = 0\\ R_{0,\pi,0} &\triangleq R_{\underline{\mathbf{q}}_{y}} \text{ with } \underline{\mathbf{q}}_{y} = (0,(0,1,0)), \quad R_{0,0,\pi} \triangleq R_{\underline{\mathbf{q}}_{z}} \text{ with } \underline{\mathbf{q}}_{z} = (0,(0,0,1))\\ R_{0,\pi,\pi} &\triangleq R_{\underline{\mathbf{q}}_{z}} \cdot R_{\underline{\mathbf{q}}_{y}} = R_{\underline{\mathbf{q}}_{z}\underline{\mathbf{q}}_{y}} = R_{-\underline{\mathbf{q}}_{x}}\\ \text{ since } (0,(0,0,1)) \cdot (0,(0,1,0)) = \left(0, \begin{pmatrix}0\\0\\1\end{pmatrix} \times \begin{pmatrix}0\\1\\0\end{pmatrix}\right) = (0,(-1,0,0))\\ \text{ which defines the same orientation as } R_{\underline{\mathbf{q}}_{x}} = (0,(1,0,0)) \end{aligned}$$

Result: $R_{\pi,0,0}$ and $R_{0,\pi,\pi}$ correspond to the same unit quaternion $\mathbf{q} = (0, (1,0,0))$

CG II – 7.1.3: Quaternions



Quaternions \leftrightarrow **Rotation Matrices**

Algorithm

Conversion of the unit quaternion $\underline{\mathbf{q}} = (\cos \frac{\phi}{2}, \sin \frac{\phi}{2} \hat{\mathbf{v}}) = (s, (x, y, z))$ into the rotation matrix *R*:

$$R_{\underline{\mathbf{q}}} = \begin{pmatrix} 1 - 2(y^2 + z^2) & 2xy - 2sz & 2xz + 2sy \\ 2xy + 2sz & 1 - 2(x^2 + z^2) & 2yz - 2sx \\ 2xz - 2sy & 2yz + 2sx & 1 - 2(x^2 + y^2) \end{pmatrix}$$
(1)

Conversion of the rotation matrix $R = (r_{ij})_{i,j=1,...,3}$ in unit quaternion. From the eq. (1) we get

$$r_{11} + r_{22} + r_{33} = 3 - 4(x^2 + y^2 + z^2) = 3 - 4(1 - s^2) = -1 - 4s^2$$

$$\Rightarrow s = \pm \frac{1}{2}\sqrt{r_{11} + r_{22} + r_{33} + 1}$$

$$r_{32} - r_{23} = 4sx \Rightarrow x = \frac{r_{32} - r_{23}}{4s}, \text{ analog: } y = \frac{r_{13} - r_{31}}{4s}, \ z = \frac{r_{21} - r_{12}}{4s}$$

Notice: Positive and accordingly negative *s* deliver two quaternions $\underline{q}^+, \underline{q}^-$, but $\mathbf{q}^- = -\mathbf{q}^+$ describe the same orientation!

```
A. Kolb
```

CG II – 7.1.3: Quaternions

7.1.4: Interpolation of Orientation

Problem

A. Kolb

Goal: Interpolation of orientations, in Euler notation:

Given: Time-orientation-pairs $(t_i, R_{\vec{\phi}^i}), \ \vec{\phi}^i = (\phi_x^i, \phi_y^i, \phi_z^i), \ i = 1, ..., N$ Wanted: Interpolation function R with $R(t_i) = R_{\vec{\phi}^i}, \ i = 1, ..., N$

Interpolation with Euler Angles:

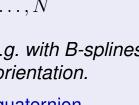
 Direct interpolation e.g. with B-splines
 Problem: Result depends on the representation of the orientation.

Interpolation with Quaternions:

Reminder: Rotations are described by 4D unit quaternions

Problem: Interpolated quaternions must be again unit quaternions. Bézier, B-Splines do not achieve this, i.e.: $C(t_i) \in \mathbb{R}^4, ||C(t_i)|| = 1 \Rightarrow ||C(u)|| = 1.$ Normalization delivers non-uniform step size normalized quaternion \underline{q}_{2} \underline{q}_{2} linear interpolation 33

CG D



Spherical Linear Interpolation (slerp)

Approach (Spherical Linear Interpolation)

Goal: "Linear" interpolation on a sphere resp. a great circle arc

Given: P, Q, R on the unit circle (i.e. on the great circle), R "between" P and \mathbf{Q} : $\alpha = \angle (\mathbf{P}, \mathbf{Q}), \beta = \angle (\mathbf{P}, \mathbf{R}).$

Solution: Relation between angle and point:

$$\mathbf{R} = \frac{\sin(\alpha - \beta)}{\sin \alpha} \mathbf{P} + \frac{\sin(\beta)}{\sin \alpha} \mathbf{Q}$$

Therefore, for $\beta = t\alpha, t \in [0, 1]$ we get

$$\mathbf{R}(t) = \frac{\sin((1-t)\alpha)}{\sin\alpha}\mathbf{P} + \frac{\sin(t\alpha)}{\sin\alpha}\mathbf{Q}$$

Linear Interpolation of Rotations by spherical interpolation of unit quaternions:

$$\underline{\mathbf{q}}(t) = \frac{\sin((1-t)\alpha)}{\sin\alpha} \underline{\mathbf{q}}_1 + \frac{\sin(t\alpha)}{\sin\alpha} \underline{\mathbf{q}}_2, \qquad \cos\alpha = s_1 s_2 + (\vec{\mathbf{v}}_1 \cdot \vec{\mathbf{v}}_2)$$

A. Kolb

CG II – 7.1.4: Interpolation of Orientation

7.1.4: Interpolation of Orientation

Remark (Details to Interpolation on circular arcs)

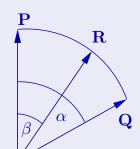
Given: P, Q, R points on the unit circle, R "between" P and Q,
$$\alpha = \angle(\mathbf{P}, \mathbf{Q})$$

Assumption: Points lie in the plane and $\mathbf{P} = (1, 0)$
 $\Rightarrow \mathbf{Q} = (\cos \alpha, \sin \alpha)$ and $\mathbf{R} = (\cos \beta, \sin \beta)$
Wanted: Linear combination $\mathbf{R} = a\mathbf{P} + b\mathbf{Q}$
Verify, whether $a = \frac{\sin(\alpha - \beta)}{\sin \alpha}$ and $b = \frac{\sin(\beta)}{\sin \alpha}$ "do the job"
 $a\mathbf{P} + b\mathbf{Q} = \frac{\sin(\alpha - \beta)}{\sin \alpha} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{\sin \beta}{\sin \alpha} \cdot \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$
 $= \begin{pmatrix} \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{0} + \frac{\sin \beta \cdot \cos \alpha}{\sin \beta} \end{pmatrix} = \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix} = \mathbf{R}$

+

< □ > < @ >

36



35

• • • • • • • •

CG D

36

Spherical Spline Interpolation

Algorithm

Evaluation of Bézier- and B-spline curves is based on successive affine combinations from control points (de Casteljau, de Boor)

Question: Is this also true for Catmull-Rom-Splines with the interpolation points of \mathbf{P}_i , i.e. are Bézier-control points affine combinations of the \mathbf{P}_i ? **Specifically:** *i*-th Bézier-segment with control points $\mathbf{C}_0^i, \ldots, \mathbf{C}_3^i$ and interpolation points $\mathbf{P}_{i-1}, \ldots, \mathbf{P}_{i+2}$:

$$\begin{split} \mathbf{C}_{0}^{i} &= \mathbf{P}_{i}, \quad \mathbf{C}_{3}^{i} = \mathbf{P}_{i+1} (\textit{end points}), \qquad \vec{\mathbf{t}}_{i} = \frac{1}{2} \left(\mathbf{P}_{i+1} - \mathbf{P}_{i-1} \right) (\textit{tangents}) \\ \mathbf{C}_{1}^{i} &= \mathbf{P}_{i} + \frac{1}{3} \vec{\mathbf{t}}_{i} = \mathbf{P}_{i} + \frac{1}{6} \left(\mathbf{P}_{i+1} - \mathbf{P}_{i-1} \right) = \frac{1}{6} \left[2 \left(\frac{1}{2} \mathbf{P}_{i} + \frac{1}{2} \mathbf{P}_{i+1} \right) - \mathbf{P}_{i-1} \right] + \frac{5}{6} \mathbf{P}_{i} \\ \textit{analog } \mathbf{C}_{2}^{i} &= \mathbf{P}_{i+1} - \frac{1}{3} \vec{\mathbf{t}}_{i+1} = \frac{1}{6} \left[2 \left(\frac{1}{2} \mathbf{P}_{i+1} + \frac{1}{2} \mathbf{P}_{i} \right) - \mathbf{P}_{i+2} \right] + \frac{5}{6} \mathbf{P}_{i+1} \end{split}$$

Evaluation of Catmul-Rom splines involves only affine combinations

Spherical Catmull Rom Spline: Use slerp-operation instead of affine combinations yields a curve that proceeds on the sphere.

A. Kolb

CG II – 7.1.4: Interpolation of Orientation

Spherical Spline Interpolation (cont.)

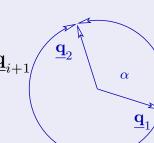
Approach

Given: A quaternion sequence that is to be interpolated: $\underline{\mathbf{q}}_1, \dots, \underline{\mathbf{q}}_n$ **Question:** Which representative of $R_{\underline{\mathbf{q}}_i}$ is to be chosen, $\underline{\mathbf{q}}_i$ or $-\underline{\mathbf{q}}_i$? **Analogy to the Unit Circle:** The smaller angle represents the "short" distance.

Rule: Adopt the quaternion \underline{q}_{i+1} if

$$\angle(\underline{\mathbf{q}}_i,\underline{\mathbf{q}}_{i+1}) > \tfrac{\pi}{2} \Leftrightarrow \mathfrak{Re}(\underline{\mathbf{q}}_i\overline{\underline{\mathbf{q}}}_{i+1}) < 0 \Rightarrow \underline{\mathbf{q}}_{i+1} \leftarrow -\underline{\mathbf{q}}_i$$

in sequential manner i = 1, i = 2, ..., i = n - 1Result: The resulting sequence has the property $\angle(\underline{\mathbf{q}}_i, \underline{\mathbf{q}}_{i+1} \leq \frac{\pi}{2})$



38 CG U

37

7.2: Spline-Based Animation

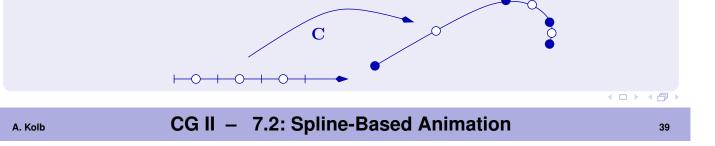
Keyframe Animation: Parameter states defined at key-times, calculation of interpolation functions (splines)

Spline Based: Direct definition and manipulation of spline curves

Questions: (1) Where is spline based animation useful?

- +: Motion of a body through space (intuitive trajectory)
- -: The fingertip of a swinging arm of a walking character in world space (no intuitive motion path)
- Item to estime-reference come into play (no more keyframe!)?
- Important: Uniform sampling of u does not create uniform motion along a curve

 \Rightarrow Goal: Positioning along the curve by means of the path length



7.2.1: Path and Speed

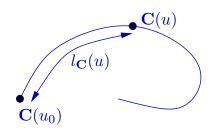
Goal: Motion of an object along a curve Spatial Motion Path of the object $C(u) : \overset{\mathbb{R}}{u} \xrightarrow{\longrightarrow} \overset{\mathbb{R}^3}{\mapsto} (x(u), y(u), z(u))$ Distance Function: Distance travelled on the path at time *t*: $s(t) : \overset{\mathbb{R}}{t} \xrightarrow{\longrightarrow} \overset{\mathbb{R}}{\mapsto} s(t)$

Goal: Motion of the object along **C**, so that until

time t the distance s(t) has been travelled.

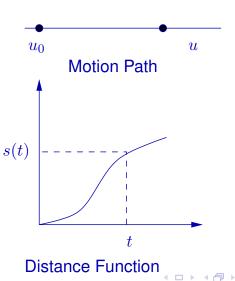
Arc Length Function $l_{\mathbf{C}}(u)$ measures the length of the path \mathbf{C} from starting point $\mathbf{C}(u_0)$ until $\mathbf{C}(u)$

Distinguish: Modeling parameters u (motion path) and time t (distance function)



40

CG CG



Algorithm

 $\mathbf{C}(u_{2k+1}^{k+1})$

 $\mathbf{\tilde{C}}(u_i^k)$

A. Kolb

Given: Motion path C(u) with start and end parameters u_0 and u, resp. **Estimation** of the arc length $l_{C}(u)$ using the length of a polygonal line

$$l_{\mathbf{C}}(u) \approx l_{\mathbf{C}}^{N}(u) = \sum_{i=0}^{N-1} \|\mathbf{C}(u_{i+1}) - \mathbf{C}(u_{i})\|, \text{ whith } u_{i} = u_{0} + i\Delta_{N}, \ \Delta_{N} = \frac{u - u_{0}}{N}$$

41

Abort, in case of small accuracy gain:

42

 $l_{\mathbf{C}}^{N_{k+1}} - l_{\mathbf{C}}^{N_k} < \varepsilon$

Exact Solution via limit, i.e. infinite many sample points

 $\mathbf{C}(u_{i\perp 1}^k)$

$$l_{\mathbf{C}}^{N}(u) = \sum_{i=0}^{N-1} \|\mathbf{C}(u_{i+1}) - \mathbf{C}(u_{i})\| = \sum_{i=0}^{N-1} \left\| \frac{\mathbf{C}(u_{i+1}) - \mathbf{C}(u_{i})}{\Delta_{N}} \right\| \Delta_{N} \stackrel{N \to \infty}{=} \int_{u_{0}}^{u} \|\mathbf{C}'(\tau)\| d\tau$$

Implementation: Generally integral not solvable \Rightarrow estimation with $N_k = 2^k$

 $\mathbf{C}(u_{2(i+1)+1}^{k+1})$

 $\mathbf{C}(u_{i+2}^k)$

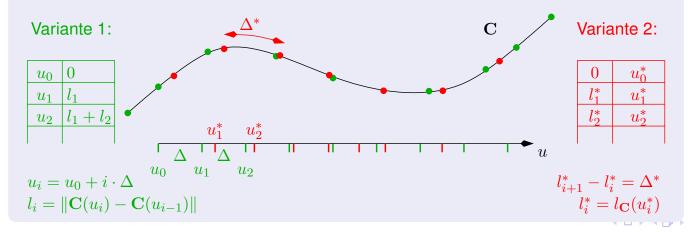
7.2.1: Path and Speed

Parameter Determination for a Curve-Point

CGII –

Approach (Determination of Parameter u (Fixed Path-Curve))Observation: The computation of $l_{\mathbf{C}}$ is dominated by the evaluation of \mathbf{C} Approach for a fixed path-curve: Storage of $l_{\mathbf{C}}(u)$ in Look-Up Table

- Storage of $l_{\mathbf{C}}(u_i)$ for equidistant parameters u_i
- 2 Storage of u_i^* for equidistante arc length
 - \Rightarrow more efficient access to desired *u*-parameter
- **Hint:** Calculation of u_i^* by bisection via the values u_i, l_i



CG II - 7.2.1: Path and Speed

Parameter Determination for a Curve-Point

Task: For the given path function s and time t: For which parameter value u does $l_{\mathbf{C}}(u) = s(t)$ apply

Approach: Seek root of $g(u) = l_{\mathbf{C}}(u) - s(t)$ Note: $l_{\mathbf{C}}(u)$ is monotonically increasing \Rightarrow unique root of g(u). Newton's Method determines root of g(u):

 $g(u) = l_{\mathbf{C}}(u) - s(t)$ Initial: Parameter u_0 Iteration: Determine tangent at $q(u_i)$: g(u) $h_i(u) = q(u_i) + q'(u_i)(u - u_i)$ u_{i+1} is root of $h_i(u)$: u_0 $u_{i+1} = u_i - \frac{g(u_i)}{g'(u_i)} = u_i - \frac{l_{\mathbf{C}}(u_i) - s(t)}{\|\mathbf{C}'(u_i)\|}$ $rac{g(u_0)}{g'(u_0)}$ $u_1 = u_0$ since $g'(u) = \frac{d}{du} \left(\int_{u_0}^u \| \mathbf{C}'(\tau) \| d\tau - s(t) \right) = \| \mathbf{C}'(u) \|$ $h_1(u) = g(u_0) + g'(u_0) (u - u_0)$ CG II - 7.2.1: Path and Speed A. Kolb 43

7.2.2: Form Control

Remark

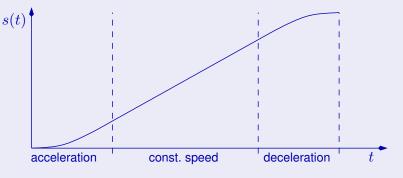
So Far: Control of the curve progression limited to

Bézier-curves/B-spline: *Placement of control points*

Bézier-splines/Catmull-Rom splines: Placement of interpolation points and choice/estimation of tangents

Problem: Many applications require other means of control, e.g. the definition of a path function

Example: Constant acceleration - constant speed - constant delay



Goal: Improved possibilities for animation-spezific cpntrol

CG II – 7.2.2: Form Control

Ease-In/Ease-Out Functions

Objective

 $ease(t) = \begin{cases} \text{"soft acceleration"} & \text{for } t \in [0, \frac{1}{2}] \\ \text{"soft deceleration"} & \text{for } t \in [\frac{1}{2}, 1] \end{cases}$

Approach (Sinus-Ease-Function)

Concept: Sinus displays on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ the desired behaviour **Definition:** Adopted to $t \in [0, 1]$: $\operatorname{ease}_{\sin}(t) = \frac{1}{2}\sin(t\pi - \frac{\pi}{2}) + \frac{1}{2} \in [0, 1]$ **Adoption** to specific time interval and/or speed by scaling of parameters **Example:** Acceleration from 0 to v_0 in the period from t = 0 to $t = t_0$:

$$ease_{sin}^{v_{0},t_{0}}(t) = \frac{4v_{0}t_{0}}{\pi} ease_{sin}\left(\frac{t}{2t_{0}}\right), \quad i.e. \ t \in [0,t_{0}] \Rightarrow \frac{t}{2t_{0}} \in [0,\frac{1}{2}]$$

$$\textit{Velocity } v(t) = \left(ease_{sin}^{v_{0},t_{0}}\right)'(t) = \frac{4v_{0}t_{0}}{2\pi} \cos\left(\frac{t\pi}{2t_{0}} - \frac{\pi}{2}\right)\frac{\pi}{2t_{0}}$$

$$= v_{0} \cos\left(\frac{\pi}{2t_{0}}(t-t_{0})\right) \implies v(t_{0}) = v_{0}$$

$$\textit{CG II - 7.2.2: Form Control}$$

Parabolic Ease-Function

Approach

A. Kolb

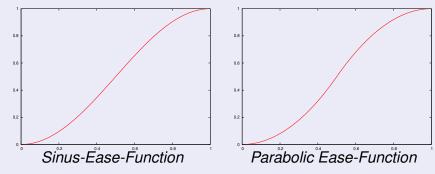
Concept: Use a constant acceleration, *i.e.*

constant acceleration (a = 1) \implies linear velocity \implies quadratic path function

ease_{parabol}(t) =
$$\begin{cases} 2t^2 & \text{falls } t \in [0, \frac{1}{2}] \\ 1 - 2(1 - t)^2 & \text{falls } t \in [\frac{1}{2}, 1] \end{cases}$$

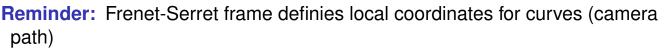
Notice: Adaptation of the acceleration/delay must consider that $(ease_{sin})'(0.5) = 1 \neq (ease_{parabol})'(0.5) = 2$

Comparison:



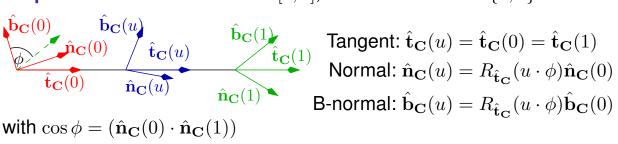
CG II – 7.2.2: Form Control

7.2.3: Camera Animation



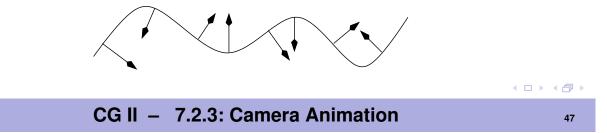
Problem: Straight lines have no curvature, thus the Frenet frame is undefined.

Interpolation of Frames for $u \in [0, 1]$, if the frame for $u \in \{0, 1\}$ is known



with $\cos \phi = (\hat{\mathbf{n}}_{\mathbf{C}}(0) \cdot \hat{\mathbf{n}}_{\mathbf{C}}(1))$

Problem: Extreme motions, e.g. meanders like paths, exhibit many points of inflection(dt: Wendepunkte), which lead to flipped normals Example of a curve with flipped normal vectores:



Alternative Approaches for Camera Alignment

Local coordinates: Orthogonal vectores $\{\hat{\mathbf{l}}, \hat{\mathbf{u}}, \hat{\mathbf{w}} = \hat{\mathbf{l}} \times \hat{\mathbf{u}}\}$ with viewing direction $\hat{\mathbf{l}}$ and up-vector $\hat{\mathbf{u}}$ in the curve point $\mathbf{C}(u)$ **Determination of 1:** • Focal point F:

$$\hat{\mathbf{l}} = (\mathbf{F} - \mathbf{C}(u)) / \|\mathbf{F} - \mathbf{C}(u)\|$$

Look-ahead direction (secant):

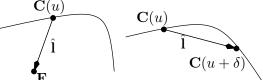
$$\hat{\mathbf{l}} = (\mathbf{C}(u+\delta) - \mathbf{C}(u)) / \|\mathbf{C}(u+\delta) - \mathbf{C}(u)\|$$

Determination of û: Global up-vector e.g. y-axis

$$\vec{\mathbf{w}} = \hat{\mathbf{l}} \times \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \ \hat{\mathbf{w}} = \frac{\vec{\mathbf{w}}}{\|\vec{\mathbf{w}}\|}, \quad \hat{\mathbf{u}} = \hat{\mathbf{w}} \times \hat{\mathbf{l}}$$

• Up vector through 2nd path U(u)

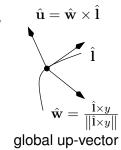
 $\vec{\mathbf{w}} = \hat{\mathbf{l}} \times (\mathbf{U}(u) - \mathbf{C}(u)), \ \hat{\mathbf{w}} = \frac{\vec{\mathbf{w}}}{\|\vec{\mathbf{w}}\|}, \ \hat{\mathbf{u}} = \hat{\mathbf{w}} \times \hat{\mathbf{l}}$

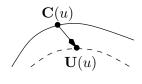


focal point

48

47





up-vector path

< □ > < @ >

CG II – 7.2.3: Camera Animation

A. Kolb

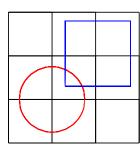
7.3: Deformations and Morphing

Notation (Deformationen, Warping, Morphing)

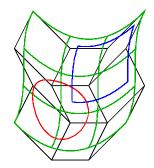
Deformation: Modification of complex objects (e.g. bending or twisting) by non-affine transformation of the surrounding space. Image Warping refers to in-plane deformations of images.

Morphing: Combination of several objects (or modified variations of an object) resulting in mixed geometries/shapes.

Blend shapes: Morphing applied to several instances of a modified geometry.



Original objects



Deformed objects (black: deform. control mesh) (green: deformatied space)

Original

Warped image

CG

50

49

A. Kolb

CG II – 7.3: Deformations and Morphing

7.3.1: Free Form Deformations (FFD)

Notation

Deformations (also called space-warp) map a space onto itself:

$$D: \begin{array}{cccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ \mathbf{P} & \mapsto & D(\mathbf{P}) \end{array} \quad \textit{respectively} \quad D: \begin{array}{cccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ \mathbf{P} & \mapsto & D(\mathbf{P}) \end{array}$$

Reference cuboid *Q*: Deformation *D* is applied relative to a reference cuboid (respectively quad in 2D):

 $Q = [x_{min}, x_{max}] \times [y_{min}, y_{max}] \text{ in 2D resp. in 3D}$ $Q = [x_{min}, x_{max}] \times [y_{min}, y_{max}] \times [z_{min}, z_{max}]$

Normalized Coordinates: Transform $\mathbf{P} = (x, y, z) \in Q$ into $T_N(\mathbf{P}) = (u, v, w) \in [0, 1]^3$:

$$\mathbf{P} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in Q \Rightarrow T_N(\mathbf{P}) = \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} (x - x_{min})/(x_{max} - x_{min}) \\ (y - y_{min})/(y_{max} - y_{min}) \\ (z - z_{min})/(z_{max} - z_{min}) \end{pmatrix} \in [0, 1]^3$$

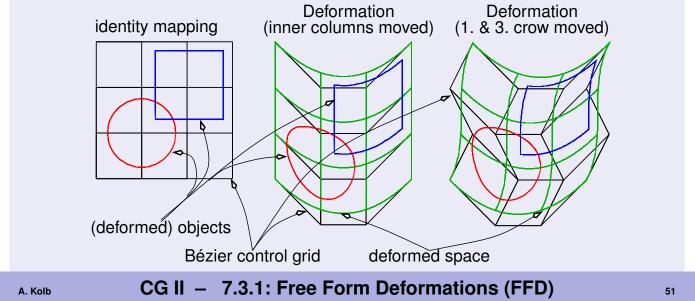
CG II – 7.3.1: Free Form Deformations (FFD)

Approach (General Idea of FFDs)

Aim: Free distortion of space i.e. of objects in Q

Initially: Map the reference cuboid Q identical to itself using a planar Bézier surface $\mathbf{C}(u, v)$.

Deformation: Modification of the control points in the plane defines the deformation



Freeform Deformation (cont.)

Approach (Setting the Initial Control Points)

Goal: Set (2D) Bézier control points C_{ij} , so that no deformation occurs, i.e.

$$D(\mathbf{P}) = D(x, y) = \sum_{i,j=0}^{n} \mathbf{C}_{ij} B_{i}^{n}(u) B_{j}^{n}(v) = \mathbf{P} \text{ for } \mathbf{P} \in Q, \ (u, v) = T_{N}(\mathbf{P})$$

Note: Here $(u, v) = T_N(\mathbf{P}) \in [0, 1]$ are used as Bézier-parameters 2D and 3D Bézier Control Points are initially set to:

$$\begin{vmatrix} \mathbf{C}_{ij} = \begin{pmatrix} \left(1 - \frac{i}{n}\right) x_{min} + \frac{i}{n} x_{max} \\ \left(1 - \frac{j}{n}\right) y_{min} + \frac{j}{n} y_{max} \end{pmatrix} \quad \mathbf{C}_{ijk} = \begin{pmatrix} \left(1 - \frac{i}{n}\right) x_{min} + \frac{i}{n} x_{max} \\ \left(1 - \frac{j}{n}\right) y_{min} + \frac{j}{n} y_{max} \\ \left(1 - \frac{k}{n}\right) z_{min} + \frac{k}{n} z_{max} \end{pmatrix}$$

resulting in the required identity mapping (no deformation) **3D-case:** Analog to the 2D Bézier surfaces we can set up tri-variat Bézier-volumes

< □ > < 凸)

52

CG

52

CG II – 7.3.1: Free Form Deformations (FFD)

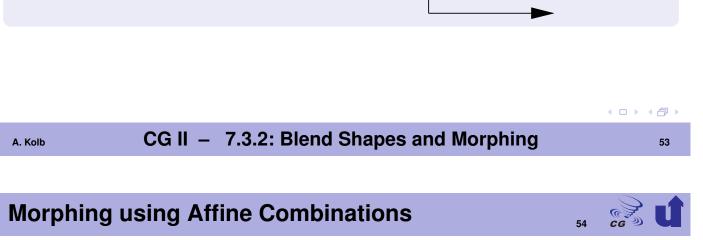
7.3.2: Blend Shapes and Morphing

Approach (Temporal Shape Blending)

Concept: Direct application of the interpolation techniques to geometries \Rightarrow Floating transition between shapes

Initial Situation: Control points \mathbf{P}_i i = 1, ..., k of an object are known for several points in time $t_1, ..., t_n$: $\mathbf{P}_i(t_1), ..., \mathbf{P}_i(t_n), i = 1, ..., k$

Procedure: Interpolation delivers $\mathbf{P}_i(t)$ for any t, thus the geometry can be determined at any time, resulting in a blending over time.



Approach (Parameter Based Shape Bedning)

Use shape prototypes (blend shapes) and combine/blend them by means of affine-combinations. Initial Situation: Control points P_i

of an object which are known for key positions $1, \ldots, k$: $\mathbf{P}_i^1, \ldots, \mathbf{P}_i^k$.

Approach: Affine combination: For blend weights α_j with $\sum_{j=0}^{n} \alpha_j = 1$ we get:

$$\mathbf{P}_i = \mathbf{P}_i(\alpha_1, \dots, \alpha_k) = \sum_{j=0}^k \alpha_k \mathbf{P}_j \quad \mathbf{P}_1(\alpha_1, \dots, \alpha_k) = \sum_{j=0}^k \alpha_j \mathbf{P}_j$$

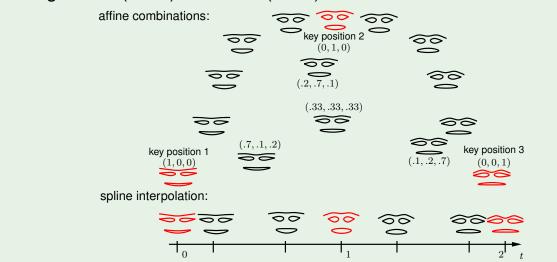
Animation: Vary the bleind weights α_k over the time: $\alpha_i(t)$

 $\mathbf{P}_{2}^{1},\ldots,\mathbf{P}_{2}^{1},\ldots,\mathbf{P}_{2}^{2},\ldots,\mathbf{P}_{2}^{2},\ldots,\mathbf{P}_{2}^{2},\ldots,\mathbf{P}_{2}^{2},\ldots,\mathbf{P}_{2}^{2},\ldots,\mathbf{P}_{2}^{2},\ldots,\mathbf{P}_{2}^{2},\ldots,\mathbf{P}_{1}^{3},\ldots,\mathbf{P}$

Morphing-Example

Initial Situation: 3 *prototype facess* with ("cheerful", "frightened", "scared") **Animation:** Modification of the blend weights over time, from cheerful (t = 0) over frightened (t = 1) to scared (t = 2).

55



Note: Key positions have been placed at different locations in order to visualize the animation in one image.

A. Kolb

CG II – 7.3.2: Blend Shapes and Morphing

Further Morphing Applications

Application (Image Morphing)

Color: Besides form, color etc. can also be blended/morphed **Example:** Morphing of an image

• Warping (FFD) puts pixels in relation: $(x, y) = D^{\text{init}}(x, y) \rightarrow D^{\text{end}}(x, y)$ $\Rightarrow Bézier-control points for initial and final images <math>\mathbf{C}_{ij}^{\text{init}}$ (initial), $\mathbf{C}_{ij}^{\text{end}}$

Intermediate image (time t) by interpolation of control points & color:

$$\mathbf{C}_{ij}^{t} = (1-t) \cdot \mathbf{C}_{ij}^{\textit{init}} + t \cdot \mathbf{C}_{ij}^{\textit{end}} \Rightarrow D^{t}$$
$$\mathbf{I}(D^{t}(x,y)) = (1-t) \cdot \mathbf{I}(D^{0}(x,y)) + t \cdot \mathbf{I}(D^{1}(x,y))$$

< □ > < //>
</2>

55

CG D