Computer Graphics II 8: Skeletal Animation

Computer Graphics and Multimedia Systems Group

University of Siegen

14

A. Kolb

CG II – 8: Skeletal Animation

8: Skeletal Animation

Structure of Chapter

- Subsection 1: Skeletons in 2D
 - Subsection 1: Hierarichal representation of skeletons
 - Subsection 2: Forward kinematics, i.e. from the state-parameters to the pose
 - Subsection 3: Inverse kinematics, i.e. from the pose to the state-parameters
 - Subsection 4: Numerical solutions of the inverse kinematics problem
- Subsection 2: Skeletons in 3D
- Subsection 3: Softbody animation, i.e. attaching skin to the skeleton

Objective

Animation of characters by animating their skeletons.

Skeleton of "Moom"

8: Skeletal Animation

Notation

Skeletons: Tree-like hierarchy of rigid members (bones), connected to groove joints or rotation joints.

Effector: Free ends of the skeleton (leaf nodes)

Examples: Robotics (rotation and groove joints) and animation (only rotation joints).

17

Description of Skeletons (2D)

Property

Successive calculation of P_{i+1} for given P_1 :

$$i = 1: \quad \mathbf{P}_{2} = T_{1 \to 2}(\mathbf{P}_{1}) = \mathbf{P}_{1} + l_{1} \begin{pmatrix} \cos \phi_{1} \\ \sin \phi_{1} \end{pmatrix}$$
$$i = 2: \quad \mathbf{P}_{3} = T_{2 \to 3}(\mathbf{P}_{2}) = \mathbf{P}_{2} + l_{2} \begin{pmatrix} \cos(\phi_{1} + \phi_{2}) \\ \sin(\phi_{1} + \phi_{2}) \end{pmatrix}$$
$$In \ general: \quad \mathbf{P}_{i+1} = T_{i \to i+1}(\mathbf{P}_{i}) = \mathbf{P}_{i} + l_{i} \begin{pmatrix} \cos(\phi_{1} + \dots + \phi_{i}) \\ \sin(\phi_{1} + \dots + \phi_{i}) \end{pmatrix}$$

Definition (Types of Kinematics)

Forward Kinematics (FK): Variation of the degrees of freedom for movement of the end-effector X

$$\mathbf{X} = f(\phi)$$

Inverse Kinematik (IK): Direct movement of the end-effector and determination of the degrees of freedom:

$$\vec{\phi} = f^{-1} \left(\mathbf{X} \right)$$

A. Kolb

CG II –
$$8.1:2D$$
 Skeletons

Aim: Correct alignment of objects with regard to a member

Observation: The skeleton describes a *hierarchical coordinate system* $K_i = \{\mathbf{P}_i, \hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i\}$

Transformation $T_{i \to i+1} = T(l_i, 0) \cdot R(\phi_{i+1})$

A. Kolb

CG II – 8.1.1: Hierarchical Animation

8.1.2: Forward Kinematics

Remark (Essential Aspects of Forward Kinematics)

• Rotations are inherited via a hierarchy

and the state

- Animation results from changing of angles over time $\phi_i(t)$
- Low-level of animation via angles becomes confusing for larger skeletons

Example (Three Bones with no Bracking)

$$\phi_{1} = 60^{\circ}, \phi_{2} = 270^{\circ}, \phi_{3} = 60^{\circ} \qquad 4 - \frac{1}{l_{1}} = 4, l_{2} = 6, l_{3} = 2, \mathbf{P}_{1} = (0,0) \qquad 3 - \frac{1}{l_{1}} = \frac{1}{l_{1}} \begin{pmatrix} \cos \phi_{1} \\ \sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} \cos \phi_{1} \\ \sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ \sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ \sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\sin \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1} \end{pmatrix} \qquad 2 - \frac{1}{l_{1}} \begin{pmatrix} -\cos \phi_{1} \\ -\cos \phi_{1$$

CG II – 8.1.2: Forward Kinematics

20

CG

8.1.3: Inverse Kinematics

Problem (Inverse Kinematics)

- f^{-1} can, in general, not be determined analytically \Rightarrow numerical solution of inverse kinematics
- Inverse kinematics is generally not uniquely solvable:

Automatism of inverse kinematics does not easily allow for typical movement patterns, e.g. limping(dt: hinken)

Notation

Under-determined System: "Number of degrees of freedom" > "number of conditions"

Accessible Workspace: Space of positions obtainable by the end effector

A. Kolb

CG II – 8.1.3: Inverse Kinematics

8.1.3: Inverse Kinematics

CG II – 8.1.3: Inverse Kinematics

Derivation of the Analytical Solution

With $\Delta x = x - x_1$, $\Delta y = y - y_1$, $s_i = \sin \phi_i$, $c_i = \cos \phi_i$, $s_{1+2} = \sin(\phi_1 + \phi_2)$, $c_{1+2} = \cos(\phi_1 + \phi_2)$, it follows from the forward calculation:

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} l_1 c_1 + l_2 c_{1+2} \\ l_1 s_1 + l_2 s_{1+2} \end{pmatrix}$$

$$\Rightarrow \Delta x^2 + \Delta y^2 = l_1^2 \underbrace{(c_1^2 + s_1^2)}_{=1} + l_2^2 \underbrace{(c_{1+2}^2 + s_{1+2}^2)}_{=1} + 2l_1 l_2 \underbrace{(c_1 c_{1+2} + s_1 s_{1+2})}_{=\cos(\phi_1 + \phi_2 - \phi_1) = \cos\phi_2}$$

$$= l_1^2 + l_2^2 + 2l_1 l_2 \cos\phi_2 \Rightarrow \phi_2 = \arccos\left(\frac{\Delta x^2 + \Delta y^2 - l_1^2 - l_2^2}{2l_1 l_2}\right)$$

and for
$$\phi_1$$
 with $t_i = \tan(\phi_i) : \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} l_1c_1 + l_2(c_1c_2 - s_1s_2) \\ l_1s_1 + l_2(s_1c_2 + c_1s_2) \end{pmatrix}$
 $\Rightarrow \Delta x (l_1s_1 + l_2(s_1c_2 + c_1s_2)) = \Delta y (l_1c_1 + l_2(c_1c_2 - s_1s_2)) | : \cos(\phi_1)$
 $\Rightarrow \Delta x (l_1t_1 + l_2(t_1c_2 + s_2)) = \Delta y (l_1 + l_2(c_2 - t_1s_2))$
 $\Leftrightarrow t_1(\Delta x (l_1 + l_2c_2) + \Delta y l_2s_2) = (\Delta y (l_1 + l_2c_2) - \Delta x l_2s_2)$

A. Kolb

CG II – 8.1.3: Inverse Kinematics

Derivation of the Analytical Solution

Example (Inverse Kinematics for the Two-Bone Skeleton) Given: $P_1 = (0,0), X = (10,0), l_1 = l_2 = 10$ Calculation of ϕ_2 :

$$\phi_2 = \cos^{-1}\left(\frac{(x-x_1)^2 + (y-y_1)^2 - l_1^2 - l_2^2}{2l_1 l_2}\right) = \cos^{-1}\left(\frac{-10^2}{2 \cdot 10^2}\right) \in \{-120^\circ, 120^\circ\}$$

Calculation of ϕ_1 :

Gen.:
$$\phi_1 = \tan^{-1} \left(\frac{(y - y_1)(l_1 + l_2 \cos \phi_2) - (x - x_1)l_2 \sin \phi_2}{(x - x_1)(l_1 + l_2 \cos \phi_2) + (y - y_1)l_2 \sin \phi_2} \right)$$

For $\phi_2 = 120^\circ$:
 $\phi_1 = \tan^{-1} \left(\frac{0 - 10 \cdot 10 \sin(120^\circ)}{10(10 + 10 \cos(120^\circ)) + 0} \right) = \tan^{-1}(-\sqrt{3}) \Rightarrow \phi_1 \in \{-60^\circ, 120^\circ\}$
For $\phi_2 = -120^\circ$:
 $\phi_1 = \tan^{-1} \left(\frac{0 - 10 \cdot 10 \sin(-120^\circ)}{10(10 + 10 \cos(-120^\circ)) + 0} \right) = \tan^{-1}(\sqrt{3}) \Rightarrow \phi_1 \in \{-120^\circ, 60^\circ\}$

< D > < B >

CG D

25

8.1.4: Numerical Inverse Kinematics Solution

Approach

• In general the IK-solution cannot be determined analytically Problem: $(\rightarrow numerical \ solution)$

there is either none, one or an infinite number of solutions **Given:** $\vec{\phi}^{old}$, \mathbf{X}^{old} with $f(\vec{\phi}^{old}) = \mathbf{X}^{old}$ and the new end effector \mathbf{X}^{new} Wanted: $\vec{\phi}^{new}$ with $f(\vec{\phi}^{new}) = \mathbf{X}^{new}$, i.e. $g(\vec{\phi}) := f(\vec{\phi}) - \mathbf{X}^{new} = 0$ **Reminder:** One dimensional Newton's method

$$\begin{aligned} \text{Initial: } \phi^{0} &= \phi^{old} \\ \text{Iteration: } \phi^{i+1} &= \text{Root of the tangent at } g \text{ in } \phi^{i} \\ \text{Tangent: } h_{i}(\phi) &= g(\phi^{i}) + g'(\phi^{i})(\phi - \phi^{i}) \\ \text{Root: } \phi^{i+1} &= \phi^{i} - \frac{g(\phi^{i})}{g'(\phi^{i})} = \phi^{i} - \frac{f(\phi^{i}) - \mathbf{X}^{neu}}{f'(\phi^{i})} \\ \text{Derivative: } f'(\phi^{i}) &\approx \frac{f(\phi^{i} + \Delta) - f(\phi^{i})}{\Delta} \end{aligned}$$

A. Kolb

CG II – 8.1.4: Numerical Inverse Kinematics Solution

General Inverse Kinematics

Objective

Is an iterative problem in animation: Known: $\vec{\phi}^{old}$, $\mathbf{X}^{old} = f(\vec{\phi}^{old})$, \mathbf{X}^{new} , as well as a fixed starting point P_1 Wanted: $\vec{\phi}^{new}$ with $\mathbf{X}^{new} = f(\vec{\phi}^{new})$

$$\Leftrightarrow \quad g(\vec{\phi}^{new}) := f(\vec{\phi}^{new}) - \mathbf{X}^{new} = 0 \text{ with} \\ \left| \vec{\phi}^{new} - \vec{\phi}^{old} \right\| = \min\{ \left\| \vec{\phi} - \vec{\phi}^{old} \right\| \mid g(\vec{\phi}) = 0 \}$$

Note: f and q are functions with n variables and m (m = 2, 3) components, in most cases $n \ge m$

$$f: \mathbb{R}^n \mapsto \mathbb{R}^m, \quad f(\vec{\phi}) = f(\phi_1, \dots, \phi_n) =$$

Xneu \mathbf{P}_1

 $f_1(\phi_1,\ldots,\phi_n$

26

Multi-Dimensional Newton's Method (n = m > 1)

Approach

Proceedure analog to the one-dimensional case **Adjustments:** $\vec{\phi}$, **X** is a multi-dimensional vektor i.e. point

FK-Function: $f : \mathbb{R}^n \mapsto \mathbb{R}^n$

$$\begin{array}{l} \textit{Deduction: } D_{f}(\vec{\phi}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial \phi_{1}} & \cdots & \frac{\partial f_{1}}{\partial \phi_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial \phi_{1}} & \cdots & \frac{\partial f_{n}}{\partial \phi_{n}} \end{pmatrix} \in \mathbb{R}^{n \times n} \textit{ (Jacobian) replaces } f' \end{aligned}$$

Newton-Iteration: $\vec{\phi}^{i+1}$ is root of the linear function at $g(\phi)$ in $\vec{\phi}^i$

Lin. funct.:
$$h_i(\vec{\phi}) = g(\vec{\phi}^i) + D_g(\vec{\phi}^i)(\vec{\phi} - \vec{\phi}^i), \quad D_g = D_f$$

Root: $\vec{\phi}^{i+1} = \vec{\phi}^i - \left(D_g(\vec{\phi}^i)\right)^{-1} g(\vec{\phi}^i) = \vec{\phi}^i - \left(D_f(\vec{\phi}^i)\right)^{-1} \left(f(\vec{\phi}^i) - \mathbf{X}^{new}\right)$
if $\left(D_f(\vec{\phi}^i)\right)^{-1}$ exists

A. Kolb

CG II – 8.1.4: Numerical Inverse Kinematics Solution

Excursion: Pseudoinverse of a Matrix

Proposition (Pseudoinverse)

Given: Underdetermined system $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ with $A \in \mathbb{R}^{m \times n}, m > n, \vec{\mathbf{b}} \in \mathbb{R}^n$ Wanted: $\vec{\mathbf{x}}^+ \in \mathbb{R}^n$ with $A\vec{\mathbf{x}}^+ = \vec{\mathbf{b}}$ and $\|\vec{\mathbf{x}}^+\|$ minimal among all solutions. Solution: $\vec{\mathbf{x}}^+ = A^+\vec{\mathbf{b}}$ with $A^+ = A^T(AA^T)^{-1}$ (*Pseudoinverse*) Since: $\mathbf{1} A\vec{\mathbf{x}}^+ = AA^T(AA^T)^{-1}\vec{\mathbf{b}} = \vec{\mathbf{b}}$

2 Let \vec{x}' be another solution, then $(\vec{x}^+ - \vec{x}') \perp \vec{x}^+$ holds true, since

$$\begin{aligned} (\vec{\mathbf{x}}^{+})^{T}(\vec{\mathbf{x}}^{+} - \vec{\mathbf{x}}') &= (A^{T}(AA^{T})^{-1}\vec{\mathbf{b}})^{T} \left(A^{T}(AA^{T})^{-1}\vec{\mathbf{b}} - \vec{\mathbf{x}}'\right) \\ &= \vec{\mathbf{b}}^{T}(AA^{T})^{-T}A \left(A^{T}(AA^{T})^{-1}\vec{\mathbf{b}} - \vec{\mathbf{x}}'\right) \\ &= \vec{\mathbf{b}}^{T}(AA^{T})^{-T}\vec{\mathbf{b}} - \vec{\mathbf{b}}^{T}(AA^{T})^{-T} = 0 \text{ since } A\vec{\mathbf{x}}' = \vec{\mathbf{b}} \end{aligned}$$

Using Pythagoras we obtain:

$$\|\vec{\mathbf{x}}'\|^{2} = \|(\vec{\mathbf{x}}' - \vec{\mathbf{x}}^{+}) + \vec{\mathbf{x}}^{+}\|^{2} = \|(\vec{\mathbf{x}}' - \vec{\mathbf{x}}^{+})\|^{2} + \|\vec{\mathbf{x}}^{+}\|^{2} \ge \|\vec{\mathbf{x}}^{+}\|^{2}$$

28

Multi-Dimensional Newton's Method (case n > m)

Approach

Problem: Jacobian matrix no longer quadratic, i.e.

$$g(\phi^i) + D_g(\vec{\phi^i})(\vec{\phi} - \vec{\phi^i}) = 0 \Leftrightarrow D_g(\vec{\phi^i})(\vec{\phi} - \vec{\phi^i}) = -g(\phi^i)$$
(1)

30

has 0, 1 or ∞ many solutions.

Pseudosinverse: If D_f has full rank, then the Pseudo-Inverse can be determined:

$$(D_f)^+ = D_f^T \cdot (D_f D_f^T)^{-1}, \qquad D_f D_f^T \in \mathbb{R}^{m \times m} \text{ invertible}$$

The pseudoinverse delivers one solution from the equation (1):

 $\vec{\phi}^{i+1} - \vec{\phi}^i = -(D_f)^+ g(\phi^i)$ whereby $\left\| (\vec{\phi}^{i+1} - \vec{\phi}^i) \right\|$ minimal among all solutions

Interpretation: $\left\| (\vec{\phi}^{i+1} - \vec{\phi}^i) \right\|$ produces minimal deviation of the new angles as compared to the old angles

A. Kolb

CG II – 8.1.4: Numerical Inverse Kinematics Solution

Skeletal Animation

Algorithm

Status: Initial state vector $\vec{\phi}_0 = \vec{\phi}(t_0)$ and end effector \mathbf{X}_0 Algorithm :

1. while (true) { // top-level animation
2.
$$X_{i+1}$$
 by external movement/dynamics
3. $j=0$;
4. $\vec{\phi}_{i+1}^0 = \vec{\phi}_i$; // initial state in time-step i+1
5. do { // iterative Newton solution for time-step i+1
6. $\vec{\phi}_{i+1}^{j+1} = \vec{\phi}_{i+1}^j - (D_f(\phi_{i+1}^j))^+ \cdot g(\phi_{i+1}^j)$; // Newton iteration j
7. j^{++} ;
8. } while ($\|\vec{\phi}_{i+1}^j - \vec{\phi}_{i+1}^{j-1}\| < \varepsilon$);
9. ... // further processing of the solution $\vec{\phi}_{i+1}$
10. i^{++} ;
11. }

30

CG D

An Example for Inverse Kinematics

Example

Initial:
$$\mathbf{P}_1 = (50, 400), \ l_1 = 150, \ l_2 = 200, \ l_3 = 100, \\ \vec{\phi}^{old} = \vec{\phi}_0 = (0.6, 1.0, -0.7), \ \mathbf{X}^{old} = (230, 763), \mathbf{X}^{new} = (350, 700)$$

1. Newton-step:

$$\frac{\partial f}{\partial \phi_1} = \begin{pmatrix} -363 \\ 180 \end{pmatrix}, \ \frac{\partial f}{\partial \phi_2} = \begin{pmatrix} -278 \\ 56 \end{pmatrix}, \ \frac{\partial f}{\partial \phi_3} = \begin{pmatrix} -78 \\ 62 \end{pmatrix}$$

$$\Rightarrow D_f = \begin{pmatrix} -363 & -278 & -78 \\ 180 & 56 & 62 \end{pmatrix}$$

$$\text{und } D_f^+ = \begin{pmatrix} 0.001025 & 0.006793 \\ -0.005497 & -0.010536 \\ 0.002010 & 0.00595 \end{pmatrix}$$

$$\vec{\phi}^1 - \vec{\phi}^0 = -D_f^+ g(\vec{\phi}^0) = -D_f^+ (\mathbf{X}^{old} - \mathbf{X}^{new})$$

$$\Rightarrow \vec{\phi}^1 = \begin{pmatrix} 0.6 \\ 1.0 \\ -0.7 \end{pmatrix} - \begin{pmatrix} 0.001025 & 0.006793 \\ -0.005497 & -0.010536 \\ 0.002010 & 0.00595 \end{pmatrix} \begin{pmatrix} -120 \\ 63 \end{pmatrix} = \begin{pmatrix} 0.295 \\ 1. \\ -0.833 \end{pmatrix}, \ f(\phi^1) = \begin{pmatrix} 336.44 \\ 681.27 \end{pmatrix}$$

A. Kolb

CG II – 8.1.4: Numerical Inverse Kinematics Solution

Alternative Kinematic Approaches

In highend-animations the disadvantages of IK mostly outweigh its advantages.

Motion-Capturing: Determining the motion path by motion capturing of charakters

Stop-Motion-Animation:

- Classical approach: Framewise motion capturing ("stop-motion")
- Keyframe-wise: Tapping der joint-angles and keyframe-animation

Post-editing: Smoothing, overlay etc. of motion paths Parallel application of FK and IK

Motion-Capturing

Classic Stop-Motion-Animation

< 🗇)

32

32

CG

8.2: 3D Skeletons

34

 $\mathbf{CG} \mathbf{II} = \mathbf{0.2.} \ \mathbf{5D} \mathbf{SKelet}$

Approach (Denavit-Hardenberg)

Alternative Approach with simple angle parameters

Initial position:

- n-limbed skeleton without branching
- each limb has a rotation axis

Coordination systems for *i*-th member $K_i = \{\mathbf{P}_i, \hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i, \hat{\mathbf{z}}_i\}$, wereby

- $\hat{\mathbf{x}}_i$ and \mathbf{P}_i is determined by the shortest connection between $\hat{\mathbf{z}}_i, \hat{\mathbf{z}}_{i+1}$:
 - exists always: skew(dt: windschief) ($\hat{\mathbf{z}}_i \not\mid \hat{\mathbf{z}}_{i+1}$) or parallel
 - automatically applies: $\hat{\mathbf{x}}_i \perp \hat{\mathbf{z}}_i$ und $\hat{\mathbf{x}}_i \perp \hat{\mathbf{z}}_{i+1}$

Approach (Denavit-Hardenberg (ctd.))

Control Parameter:

- a_i distance between axes $\hat{\mathbf{z}}_i$ and $\hat{\mathbf{z}}_{i+1}$
- α_i angle between $\hat{\mathbf{z}}_i$ and $\hat{\mathbf{z}}_{i+1}$ (both *z*-axes $\perp \hat{\mathbf{x}}_i$)
- d_i distance of the intersection $\hat{\mathbf{x}}_i \cap \hat{\mathbf{z}}_{i+1}$ to origin \mathbf{P}_{i+1} from K_{i+1}
- ϕ_i angle between $\hat{\mathbf{x}}_i, \hat{\mathbf{x}}_{i+1}$ (both $\perp \hat{\mathbf{z}}_{i+1}$)

With starting point \mathbf{P}_1 : $4 \times n + 3$ degrees of freedom

Transformation from K_i to K_{i+1} in local coordinates:

 $R(x, \alpha_i)$: Map $\hat{\mathbf{z}}_i$ to $\hat{\mathbf{z}}_{i+1}$ (current *x*-axis is $\hat{\mathbf{x}}_i$). $T(a_i, 0, d_i)$: Slide \mathbf{P}_i to \mathbf{P}_{i+1} $R(z, \phi_i)$: Map $\hat{\mathbf{x}}_i$ to $\hat{\mathbf{x}}_{i+1}$. Combined:

 $\mathbf{Q}^{i+1} = T_{i \to i+1}(\mathbf{Q}^i), \quad T_{i \to i+1} = R(x, \alpha_i) \circ T(a_i, 0, d_i) \circ R(z, \phi_i)$

CG D

37

36

A. Kolb

CG II – 8.2: 3D Skeletons

8.3: Soft-Body Animation

Objective

Goal: Animation of bodies with muscles and skin on a skeleton basis Simple Layer-Model: Control of the skeleton with linkage to the skin Skeleton-level: Lowest level; corresponds to the multi limbed model Skin-level: geometry from NURBS-surface or another geometric representation Muscle-level: Connects skeleton and skin via FFD's

Approach (Chadwick '89 (special case: arm or leg))

Initial position: Two members with zero rotation

Definition of FFD-volumes: Each member is furnished with tri-cubic FFD Bézier-volumes.

initial state

8.3: Soft-Body Animation

Edge conditions for C^1 -transitions between *FFD*-volumes:

KPs of the border planes are identical

In the second planes of the neighboring planes lie collinearly (ratio 1:1)

Seven control point planes per member, three inner planes, per each two connection planes

A. Kolb

CG II - 8.3: Soft-Body Animation

Animation of the layer model

Bending of the joint: Fulfills C^1 -transitions

- Skaling of the two free inner planes: Muscle control
- Potation of the two free connection planes: Alignment of the members for joint rotation

Binding: Geometry is distorted according to it's position in the FFD volume

Problem: Automatic association of geoemtry is not always correct \rightarrow interactive binding of geometry to skeleton

CG CG

39

38

38