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cG

Structure of Chapter

@ Subsection 1: Skeletons in 2D

e Subsection 1: Hierarichal representation of skeletons

e Subsection 2: Forward kinematics, i.e. from the state-parameters to the pose
@ Subsection 3: Inverse kinematics, i.e. from the pose to the state-parameters
e Subsection 4: Numerical solutions of the inverse kinematics problem

@ Subsection 2: Skeletons in 3D
@ Subsection 3: Softbody animation, i.e. attaching skin to the skeleton

Obijective

Animation of characters by ani-
mating their skeletons.

Character “Moom” Skeleton of “Moom”
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8: Skeletal Animation g;% ['

Notation

Skeletons: Tree-like hierarchy of rigid members (bones), connected to
groove joints or rotation joints.

Effector: Free ends of the skeleton (leaf nodes)

joint 4 (rot)

bone 3 joint 3(trans) /
; r~ 2 bone 3
\ in N )
/ PREIN

: ’\ bone 4
joint 2 (rot)

T bone 1

Examples: Robotics (rotation and groove joints) and animation (only rotation joints).

bone 1
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8.1: 2D Skeletons g§) l'

Definition (Description of Skeletons (2D))

Initial Position: @ n-membered |
skeleton with fixed lengths {4, ..., 1,
@ Pivot Point(dt: Drehpunkt) P;: Start
point of member i
@ End-effector X = P,,1: Ending
point of the skeleton

Degrees of Freedom: n + 2 units:
@ Pivot point P, of the first member
@ Angle ¢; to parent (n > 1) resp.
orientation of first memeber (n = 1)
State Vector: Describes all free angles
é=(¢1,-..,6n) 2 D-skeleton without branching
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Description of Skeletons (2D) g,% [I

Property
Successive calculation of P; ., for given P:

7 =1": P, :T1—>2(P1> :P1+l1(g?§£11>

2 Ry P (S0 2)

: T Nop g [cos(o1+...+ &)
In general. Pii1=T,;:1(P;)=P; +1; (sin(¢1 i ¢i))
Definition (Types of Kinematics)

Forward Kinematics (FK): Variation of the degrees of freedom for
movement of the end-effector X

X = f(§)
Inverse Kinematik (IK): Direct movement of the end-effector and
determination of the degrees of freedom:

6=F"1(X)
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8.1.1: Hierarchical Animation g;% ['

Aim: Correct alignment of objects with regard to a member

Observation: The skeleton describes a hierarchical coordinate system
Ki ={P;,%x;,¥:}

Transformation 7;_; 11 = T(1;,0) - R(¢p;y1)

L] '
Draw Geometr%/
Bone Geometry (Parameter: Length [)
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Hierarchical Animation « l'

only h|pp
animation

Example

Hierarchical Models: \ .
Hierarchical top-down animation L \
Example of a Leg:

@ Hip-animation I :

©Q Knee-animation addit. knee

© Foot-animation animation }

Problems with the above example

@ Prevention of horizontal

R i Sl BT SEE

sliding ?
@ Prevention of vertikal it 1 :
penetration acdt, oo
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8.1.2: Forward Kinematics g§ l'

Remark (Essential Aspects of Forward Kinematics)
@ Rotations are inherited via a hierarchy
@ Animation results from changing of angles over time ¢;(t)
@ Low-level of animation via angles becomes confusing for larger skeletons

Example (Three Bones with no Braching)

$1 = 60°, ¢y = 270°, p3 = 60°
lh=4,1b=6,1ls=2, P, = (0,0)

Po=P+ 14 (g?ﬁgll)

= () <1 (328) = (2v8)
Po= (0 18) = (vm) 4o (85°) = (355)
ot ni ) - GRYs) v () - Gas)
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8.1.3: Inverse Kinematics g§) l'

Problem (Inverse Kinematics)

@ 7! can, in general, not be determined analytically = numerical solution
of inverse kinematics

Q@ Inverse kinematics is generally not uniquely solvable:

@ Automatism of inverse kinematics does not easily allow for typical
movement patterns, e.g. limping(d: hinken)

Notation

Under-determined System: “Number of degrees of freedom” > “number of
conditions”

Accessible Workspace: Space of positions obtainable by the end effector
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8.1.3: Inverse Kinematics g§) l'

Example (Analytical solution of inverse kinematics)

Given: Skelton with two bones \

@ positions Py = (iji)

@ end effector X @)

@ lengths Iy, 15
Obtainable workspace: .- h E

1Q : 1Q—Puf €[|ls = 2|, 11 + 2]} L

work space .. L.

Analytical solution of inverse kinematics:

1 ((33—371)2+(y—y1)2 — I —l§>
20115
¢1 = tan ! ((’!J —y1)(lh +lacosdy) — (x —a1)lo Sin¢2>
' (z — 1) (1 +l2co8 ) + (y — y1)l2sin ¢

P9 = COS
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Derivation of the Analytical Solution «3 ['

With Ar = 2 — 21, Ay =y — y1, 8; = sin¢;, ¢; = cos ¢;, S142 =
sin(¢1 + ¢2), c142 = cos(¢p1 + ¢2), it follows from the forward calculation:

(AI‘) _ (llcl + l2€1_|_2)
Ay l151 + 125142
= Ao+ Ay* = Bi(c] + 1) +13(clya + 5140) T 20la( crcipa + 15142 )
N—— ———— o
=1 =1 —Cos(qbl—}-qbg ¢1)=cos ¢2
= 13+ 15+ 2lyly cos ¢y = ¢ = arccos (Aw +§f§;l%_l§)
and for ¢; with t; = tan(¢;) ( ) = (hath(ac —sis)
1 v l181 + l2(8162 + 0182)

= Az (l181 + lg(SlCQ + 0182)
= Az (lltl + lg(thz + 82)
< t1(Ax(ly + lace) + Aylass

) = Ay(licg +1la(cieo — s182)) |1 cos(pr)
) = Ay (ll +l2(62 —tlsg))
) = (Ay(ll -+ ZQCQ) — A$1282)
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Derivation of the Analytical Solution 2 ul

cG

Example (Inverse Kinematics for the Two-Bone Skeleton)
Given: P, = (0,0), X = (10,0), l1 =15=10
Calculation of ¢-:

1 (=2 (y—y) =313 . —1 (=10
P9 = COS ( TP = COS 5

Calculation of ¢;:

i) e {~120°,120°)

o ((w=y)(l1 +l2cospa) = (¥ — 1)l2sin ¢>2>
Gen.: ¢, = tan <($U —x1)(l1 + Iz cos p2) + (y — y1)l2 sin ¢
For ¢ = 120° :

b1 = tan " (Trioiar et ) = tan~'(=V/3) = ¢1 € {~60°,120°}
For ¢o = —120° :

61 = tan " (imr e Gt ) = tan 1 (V3) = 1 € {~120°,60°)
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8.1.4: Numerical Inverse Kinematics Solution «

-
26 cG >

Approach

Problem: @ /n general the IK-solution cannot be determined analytically
(— numerical solution)

@ there is either none, one or an infinite number of solutions
Given: ¢°'¢, Xl with f(¢°4) = X°!4 and the new end effector X™e
Wanted: ¢"¢® with f(¢"%) = X ¥ je. g(¢) := f(p) — X" =0
Reminder: One dimensional Newton’s method

A — — Xneu
Initial: ¢ = ¢4 9(9) = f(¢) )
. . g
lteration: ¢t = Root of the tangent at g in ¢
Tangent: hi(¢) = g(¢') + ¢'(¢")(¢ — ¢') # -9
cil i g(@') i f(eh)—X"e : . ‘ i
Root: ¢ = &' = Gy = '~ ey — | 7 dm=e-48
Derivative: £ e e AA) — f(¢) m(@) = 9(6) + (6") (¢ — &)
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General Inverse Kinematics . g§)
Objective

Is an iterative problem in animation:

Known: ¢°d Xeld — f(g°ld) Xnew a5 well
as a fixed starting point P

Wanted: ggnew Wlth X new — f(&new)

|

Note: f and g are functions with n variables
andm (m = 2,3) components, in most
casesn>m

. f1(¢17'-'7¢)n)
f:R" = R™, f()—f(qbl,.--,cbn)—( : )
fm(gblw-wqbn)

AN g<$new) o f(ggnew) _ X" — () with

grer — ¢4 = min{|[§ - 5| | 9(8) = 0
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Multi-Dimensional Newton’s Method (n = m > 1) g% ['

28

Approach
Proceedure analog to the one-dimensional case
Adjustments: q?, X is a multi-dimensional vektor i.e. point

FK-Function: f : R" — R"

of1 of1
55 - B
Deduction: D¢(¢) = Lo : € R"*™ (Jacobian) replaces f'
Ofn dfn
¢1 " Ogn

Newton-lteration: ¢! s root of the linear function at g(¢) in ¢
Lin. funct.: hy(¢) = 9(6") + Dy(6')(¢ = ¢'), Dy = Dy
Root: §+1 = §' - ( M) o= (0s@) " (£ - x"v)
if (Df(qsl)) exists
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Excursion: Pseudoinverse of a Matrix g§) ['

29

Proposition (Pseudoinverse)

Given: Underdetermined system AX = b with A € R™*" m > n,b € R"
Wanted: X € R™ with AT = b and ||X"|| minimal among all solutions.

Solution: X+ = A*b with At = AT(AAT)~! (Pseudoinverse)

Since: @ Axt = AAT(AAT)"'b=b
© Letx' be another solution, then (X — X') 1. X holds true, since

&N (RT — %) = (AT(AAT) )T (AT(AAT)‘15 _ i’)
— b7 (AAT)"T A (AT(AAT)—16 . i)
= b7 (AAT)Tb — b (AAT)"T = 0 since AX =b
Using Pythagoras we obtain:

%7 = | & = %) + 2| = || = O + =24 > =]
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Multi-Dimensional Newton’s Method (case n > m) g§) ['

30

Approach
Problem: Jacobian matrix no longer quadratic, i.e.

9(¢") + Dy(8")(6 — ¢') = 0 & Dy()(6 — &) = —9(¢') (1)

has 0,1 or oo many solutions.

Pseudosinverse: If D¢ has full rank, then the Pseudo-Inverse can be
determined:

(Dy)* =D} - (DyD})~",  DyD} € R™™ invertible

The pseudoinverse delivers one solution from the equation (1):

—.

Gt _gi = —(Dy)tg(¢") whereby H (¢t — ¢")|| minimal among all solutions

Interpretation: H (g1 — &) H produces minimal deviation of the new angles
as compared to the old angles
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Skeletal Animation g§) ['
Algorithm

Status: Initial state vector ¢, = ¢(t,) and end effector X,
Algorithm :

while ( true ) { // top-level animation
X,+1 by external movement/dynamics
J =0;
2 = — ¢;;// initial state in time- step i+1
do { // 1terat1ve Newton solution for time-step i+l

1 :
¢‘Zi1 = ¢7,1 — (Dy( z+1))+‘9( z—l—l) // Newton iteration j
j++;

} while (‘

<€);

1+1 ¢z—{—1
. // further processing of the solution q;H_l
0. L g

1. }

STS® oNooakb A
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An Example for Inverse Kinematics g;% l'

Example
1 = (50,400), [, = 150, I5 = 200, I3 = 100,

¢ = ¢y = (0.6,1.0,—0.7), X° = (230, 763), X" = (350, 700)

Initial:

1. Newton-step: xalt
7o = (150): 5 = (56 7y = ()

363 —278 T8
= Df:(180 56 62)

0.001025  0.006793
und D}F = <—0.005497 —0.010536>
0.002010 0.00595

51 . Q_;O _ —D+g(¢0) _D+(X0ld Xne'w)

0.6 0.001025  0.006793 0.295
= gl — ( 1.0 ><0.005497 () 010536> ( é:fo) _ ( 1. ) F(t) = (23?-‘2%)

1. iteration
(Newton step)

P,
—0.7 0.002010 0.00595
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Alternative Kinematic Approaches g;% l'

33

In highend-animations the disadvantages of IK mostly outweigh its
advantages.
Motion-Capturing: Determining the motion path by motion capturing of
charakters

Stop-Motion-Animation:

@ Classical approach: Framewise motion capturing (“stop-motion”)

@ Keyframe-wise: Tapping der joint-angles and keyframe-animation
Post-editing: Smoothing, overlay etc. of motion paths
Parallel application of FK and IK

Classic Stop-Motion-Animation

Motion- Capturlng

A. Kolb CG Il — 8.1.4: Numerical Inverse Kinematics Solution 33



8.2: 3D Skeletons < l'

Approach (Hierarcical coordination systems in 3D)
Approach: Description of the limb hierarchy as in 2D

Transformation 7;_.;,; = T(1;,0) - R(@'H)
whereby R(¢iy1) = R(¢7,1, ¢}, 1, ¢7,1) (rotation matrices with Euler angles)

Forward kinematics can be used directly with
this approach

Inverse kinematics requires optimization of
the rotation parameters:

@ Avoid ambiguities by using quaternions

@ Problem: Optimization of quaternions
enforces adherence to the condition of
unit quaternions: ||q|| = 1
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Approach (Denavit-Hardenberg)
Alternative Approach with simple angle parameters
Initial position:
@ n-limbed skeleton without branching
@ each limb has a rotation axis
Coordination systems fori-th member K; = {P;,X;,y:,%;}, wereby
@ 2z, corresponds to the axis of rotation
@ Xx; and P; is determined by the shortest connection between z;,z;1:
@ exists always: skew(dt: windschief) (z; || zi+1) or parallel
@ automatically applies: x; | z;, undx; | z;+1

Zit1
Pt

member 7
Xit1

member i + 1

Xi N Zit1
member i — 1P,
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Denavit-Hardenberg «

cG

Approach (Denavit-Hardenberg (ctd.))
Control Parameter:
a; distance between axes z; and z; 1
a; angle between z; and z;,, (both z-axes | x;)
d; distance of the intersection x; N z;+1 to origin P;, from K, 4
¢; angle between x;,x;.1 (both | z;,1)
With starting point P1: 4 x n + 3 degrees of freedom

Transformation from K; to K, in local coordinates:

R(x,a;): Map z; to z; 1 (current x-axis is x;).
T(a;,0,d;): SlideP; toP;
R(z, ¢Z) Map x; t0 X;+1.

Combined:

QT =T,.;11(Q"), Ti_iy1 = R(x,0;3) 0T (as,0,d;) o R(z, ¢;)

A. Kolb CG Il — 8.2: 3D Skeletons
8.3: Soft-Body Animation g;%
Obijective

Goal: Animation of bodies with muscles and skin on a skeleton basis

Simple Layer-Model: Control of the skeleton with linkage to the skin

Skeleton-level: Lowest level; corresponds to the multi imbed model
Skin-level: geometry from NURBS-surface or another geometric
representation

Muscle-level: Connects skeleton and skin via FFD’s

Approach (Chadwick ’89 (special case: arm or leg))
Initial position: Two members with zero rotation

Definition of FFD-volumes: Each member is furnished with tri-cubic FFD
Bézier-volumes.

|
|
7
|
|

initial state
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8.3: Soft-Body Animation «3 ['

Approach (Chadwick ’89 (ctd.))

Edge conditions for C!-transitions between FFD-volumes:

@ KPs of the border planes are identical
@ KPs of the neighboring planes lie collinearly (ratio 1:1)

Seven control point planes per member, three inner planes, per each two
connection planes

connecting inner
plane lane

collineare control points
identical control points
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Animation of the layer model g§) ['

Bending of the joint: Fulfills C'!-transitions

@ Skaling of the two free inner planes: Muscle control
@ Rotation of the two free connection planes: Alignment of the members
for joint rotation

Binding: Geometry is distorted according to it’s position in the FFD volume

Problem: Automatic association of geoemtry is not always correct —
interactive binding of geometry to skeleton

—T [ T [T - \FFD
//\J\§/ A
/\\ ’_g \\
L — \Skeleton
adoption of inner plane R
T— ' bound
R geometry
— \‘
adoption of connecting planes Binding Problem
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