

Seite 1 von 2

Übung zu Computergraphik I

Übungsblatt 8 –

Lehrstuhl für Computergraphik und Multimediasysteme

Hendrik Hochstetter, Bianca Kretz, Rene Winchenbach

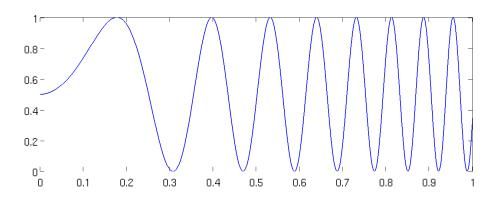
Abgabe: Bis spätestens Donnerstag 5. Juni 2014, 10 Uhr. **Besprechung:** Mittwoch 18. Juni 2014 und Donnerstag 26. Juni 2014

Hinweise: Bearbeitungen bitte mit Name, Matrikelnummer und Übungsgruppe beschriften und zusammengeheftet in den Pappkarton vor Büro H-A 7115/1 werfen.

Aufgabe 1 Texturfilterung (1 Punkt)

In Abbildung 1 ist eine Graustufentextur mit 8×8 Pixeln zu sehen, die auf die Texturkoordinaten $s,t\in [0,1]$ abgebildet werden. Außerdem sei die Texturkoordinate $\mathbf{S}=\begin{pmatrix} 2/3\\11/20 \end{pmatrix}$ gegeben.

	t								
1	$\frac{\frac{4}{5}}{\frac{4}{5}}$	$\frac{4}{5}$ $\frac{4}{5}$	1 1	$\frac{\frac{3}{5}}{\frac{2}{5}}$	$\frac{4}{5}$ $\frac{3}{5}$	$\frac{\frac{1}{5}}{1}$	$\frac{2}{5}$ 1	3 5 3 5	
	<u>1</u> 5	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	4 5	$\frac{1}{5}$	$\frac{2}{5}$	0	
	<u>3</u> <u>5</u>	$\frac{3}{5}$	$\frac{1}{5}$	$\frac{4}{5}$	$\frac{4}{5}$	1	$\frac{3}{5}$	$\frac{3}{5}$	
	$\frac{3}{5}$	<u>3</u> <u>5</u>	$\frac{1}{5}$	$\frac{3}{5}$	0	$\frac{1}{5}$	$\frac{2}{5}$	0	
	<u>1</u> 5	$\frac{1}{5}$	1	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{1}{5}$	<u>3</u> 5	$\frac{3}{5}$	
	<u>2</u> <u>5</u>	<u>2</u> 5	$\frac{4}{5}$	1	$\frac{4}{5}$	$\frac{1}{5}$	<u>3</u> 5	$\frac{2}{5}$	
0	<u>2</u> <u>5</u>	<u>2</u> <u>5</u>	1	$\frac{2}{5}$	1	1/5	<u>2</u> 5	1/5	s
0									1


Abbildung 1: Textur mit Graustufen. Die Kreuzungspunkte sind die Mittelpunkte der Texel. Entsprechend sind die Grauwerte unmittelbar neben den Kreuzungspunkten angegeben.

- 1.1 Bestimmen Sie durch Nearest-Neighbor-Lookup den Grauwert für die Texturkoordinate S.
- 1.2 Bestimmen Sie mittels bilinearer Interpolation den Grauwert für die Texturkoordinate S.

1.3 Welchen Grauwert erhalten Sie für die Texturkoordinate $S_2 = \binom{3/2}{4/3}$ durch Nearest-Neighbor-Lookup, wenn Texturkoordinaten durch Clamping fortgesetzt werden? Welchen Grauwert erhalten Sie, wenn Texturkoordinaten durch Repeat fortgesetzt werden?

Aufgabe 2 Das Aliasing-Problem und MipMapping (1 Punkt)

In dieser Aufgabe sollen Sie anhand einer kleinen Rechnung das Aliasing-Problem, das u.a. beim Texturieren regelmäßig auftritt, untersuchen. In Abbildung 2 ist der Graph der Funktion $f(x) = \frac{1+\sin(50x^2)}{2}$ abgebildet.

Abbildung 2: *Graph der Funktion* f(x).

- 2.1 Es sei B eine 1D-Textur mit 28 Texeln, die die Graustufenwerte $f(\frac{i}{27}), i \in \{0,\dots,27\}$ haben. Berechnen Sie für die Texturkoordinaten $\mathbf{S}_1 = \frac{10}{13}$, $\mathbf{S}_2 = \frac{11}{13}$ und $\mathbf{S}_3 = \frac{12}{13}$ den Graustufenwert der Textur B mittels Nearest-Neighbor-Lookup. Was fällt an diesen Werten im Vergleich zum Kurvenverlauf aus Abbildung 2 auf und womit ist dies zu erklären?
- 2.2 Um auftretenden Aliasing-Effekten entgegenzuwirken, wird bei der Texturierung häufig Mip-Mapping verwendet. Berechnen Sie für die Texturkoordinaten $\mathbf{S}_i, i \in \{1,2,3\}$ die Graustufenwerte des nächst gröberen MipMap-Levels. Das nächst gröbere MipMap-Level B', mit halbierter Auflösung von B, wird durch Mittlung der Graustufenwerte in B bestimmt. Welcher Effekt soll durch die Verwendung von MipMapping erreicht werden und wie gut gelingt dies im obigen Beispiel?