
Computer Graphics and
Multimedia Systems

Page 1 of 3

Assignment in Computer Graphics II
– Assignment 7 –
Computer Graphics and

Multimedia Systems Group
David Bulczak, Christoph Schikora

Assignment 1 [1+1 Points] Programming: Subdivision Curves

Download the program framework assignment 07.zip from the practice website. The aim of the task is
to implement the two subdivision-algorithms Chaikin and 4-Point Subdivision.

One part of the task is optional. You can earn one extra point for programing the other part to supplement
your point account. For the 4-Point scheme part also the additional question has to be answered.

The available program has the following functionality:

1. Read data as an argument (eg data 01): Number of polygon vertices n and the corresponding
vertices.

2. With the ’+’ and ’-’ keys the level of subdivision can be adjusted.

3. With the keys ’(’ and ’)’, the weight w of the 4-Point-Subdivision scheme can be configured.

The provided program consisting of the following classes:

P3D, V3D: A 3D point and vector class incl. of various operators to manipulate points and vectors.

Polygon3D: The already defined class of 3D polygons.

Subdivision: Class for the calculation of subdivisions for a given polygon Polygon3D.

DisplayOGL: Class for displaying the input polygon and subdivision curves.

The class hierarchy is complete, however, lacks the implementation of methods for subdivision.

1. Implement the following methods recursively

• static Polygon3D computeChaikinSubdivision(unsigned int level);

• static Polygon3D compute4PointSubdivision(unsigned int level, double w);

2. What happens if weight w is chosen to be greater than 0.5? How do you explain this behavior?

Page 2 of 3

Assignment 2 [1 Point] Solid Modeling

To achieve boolean operations with polygonal b-reps, efficient computations for polygon intersections are
necessary.

Given two planar polygons with vertices {P1, . . . ,Pk} respectively {Q1, . . . ,Ql} and two planes EP,EQ

containing the polygons.

EP,EQ are given in Hesse normal form:

EP : n̂P ·

x
y
z

+dP = 0, n̂P =

aP

bP

cP


EQ : n̂Q ·

x
y
z

+dQ = 0, n̂Q =

aQ

bQ

cQ



1. Show that for arbitrary vectors

a =

a1

a2

a3

, b =

b1

b2

b3

, c =

c1

c2

c3


the following holds:

b×a =−a×b, (1)

a×a = 0, (2)

a · (a×b) = 0, (3)

a× (βb+ γc) = β(a×b)+ γ(a× c) (4)

with scalar factors β,γ ∈ R.

2. To implement the intersection computation we need a function intersectPlane, that intersects
two planes EP,EQ and returns a line G in parametric form.
Proof that

G : P+α~l,α ∈ R with P =
(dQn̂P−dPn̂Q)× (n̂P× n̂Q)

‖n̂P× n̂Q‖2 and~l = n̂P× n̂Q

solves the problem!

Hint:

1. Think about the properties of G w.r.t. the planes.

2. â · (b̂× (ĉ× d̂)) = (â× b̂) · (ĉ× d̂)

Page 3 of 3

Assignment 3 [1 Point] L-Systems

Given the alphabet V = {∆,s,+,−, [,]}, the axiom ω0 = ∆ and the rule

p(∆) = s[∆][+∆][−∆], else p(x) = x,∀x 6= ∆

The geometrical interpretation of a word is implemented in an OpenGL program in the following way:

character OpenGL-Code
∆ −→ glBegin(GL TRIANGLES);

glVertex2f(0.0, 0.0);
glVertex2f(1.0, 0.0);
glVertex2f(0.5, sqrt(3.0)/2.0);
glEnd();

s −→ glScalef(0.5, 0.5, 1.0);
+ −→ glTranslatef(1.0, 0.0, 0.0);
- −→ glTranslatef(0.5, sqrt(3.0)/2.0, 0.0);
[−→ glPushMatrix();
] −→ glPopMatrix();

Sketch the figures you get after 0-, 1-, 2- and 3- iterations.

Submission: 27.11.2014, before /at the beginning of the exercise.

Submit task 2 and 3 (also task 1 additional question) on paper and send for task 1 an email with the
modified files.
→ Email to: david.bulczak@uni-siegen.de, christoph.schikora@uni-siegen.de

The deadline is the same for all tasks, e.g. emails will only be accepted till Thursday 12:00 clock.
If we receive your mail, we will send you as soon as possible a confirmation.

