

Seite 1 von 2

Übungen zu Computergraphik I

- Übungsblatt 3 -

Lehrstuhl für Computergraphik und Multimediasysteme

Hendrik Hochstetter, John Rickard, Rene Winchenbach

Abgabe: Für Studenten mit 5 LP verpflichtend bis spätestens 30. April 2015, 10 Uhr

Besprechung: Mittwoch 6. Mai und Donnerstag 7. Mai 2015

Aufgabe 1 Skalarprodukt (1 Punkt)

Gegeben sei das gleichschenklige Dreieck aus Abbildung 1, das durch die beiden Vektoren $\hat{\mathbf{u}}$ und $\hat{\mathbf{v}}$ aufgespannt wird. Die Vektoren $\hat{\mathbf{u}}$ und $\hat{\mathbf{v}}$ haben beide die Länge 1 und schließen den Winkel α ein. Da $\hat{\mathbf{u}}$ die Länge 1 hat, ist die Länge der orthogonalen Projektion von $\hat{\mathbf{v}}$ auf $\hat{\mathbf{u}}$ genau $\cos\alpha$. Die Länge des durch die Projektion aufgespannten Vektors, der in Abbildung 1 gestrichelt dargestellt ist, entspricht genau $\sin\alpha$.

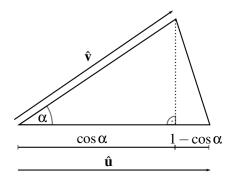


Abbildung 1: Ein gleichschenkliges Dreieck mit Winkel α.

Für das linke Teildreieck liefert der Satz von Pythagoras die Gleichung

$$\cos^2\alpha + \sin^2\alpha = \|\hat{\mathbf{v}}\|^2.$$

- 1.1 Leiten Sie eine entsprechende Formel für das rechte Teildreieck her.
- 1.2 Vergewissern Sie sich durch Umformen Ihrer Gleichung, dass für das obige Dreieck

$$\hat{\mathbf{u}} \cdot \hat{\mathbf{v}} = \|\hat{\mathbf{u}}\| \|\hat{\mathbf{v}}\| \cos \alpha$$

gilt.

Aufgabe 2 Kreuzprodukt und Spatprodukt (1 Punkt)

- 2.1 Zeigen Sie, dass der Vektor $\vec{\mathbf{u}} = \vec{\mathbf{v}} \times \vec{\mathbf{w}}$ senkrecht zu $\vec{\mathbf{v}}$ und $\vec{\mathbf{w}}$ ist.
- 2.2 Finden Sie drei Vektoren im 3D mit assoziativem Kreuzprodukt.
- 2.3 Welches Volumen hat das Parallelepiped aufgespannt durch die Vektoren:

$$\vec{\mathbf{u}} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{\mathbf{v}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{\mathbf{w}} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Aufgabe 3 Lineare Abbildungen (1 Punkt)

- 3.1 Welche der folgenden Funktionen von $\vec{\mathbf{v}}=(v_1,v_2)^T$ sind lineare Abbildungen? Geben Sie für die linearen Abbildungen jeweils die zugehörige Matrix $\mathbf{A}\in\mathbb{R}^{2\times 2}$ an. Ist die Matrix invertierbar? Jeweils mit Begründung.
 - a) $f_a(\vec{\mathbf{v}}) = (v_2, v_1)^T$
 - b) $f_b(\vec{\mathbf{v}}) = (v_1, v_1)^T$
 - c) $f_c(\vec{\mathbf{v}}) = (0,1)^T$
- 3.2 Berechnen Sie die Matrix \mathbf{A} einer linearen Abbildung $g: \mathbb{R}^2 \to \mathbb{R}^2$, $g(\vec{\mathbf{x}}) = \mathbf{A} \cdot \vec{\mathbf{x}}$, welche den Vektor $\vec{\mathbf{x}}_1 = (1,2)^T$ auf $\vec{\mathbf{w}}_1 = (7,0)^T$ und $\vec{\mathbf{x}}_2 = (-2,2)^T$ auf $\vec{\mathbf{w}}_2 = (4,-6)^T$ abbildet.