

Assignment in Computer Graphics II

Assignment 1 –
Computer Graphics and
Multimedia Systems Group
David Bulczak, Christoph Schikora

Assignment 1 [2 Points] analytic geometry (repetition)

- a) Given the points P = (2, 1, 5) and Q = (4, -1, 0) in \mathbb{R}^3 .
 - Determine the parametric line equation of form $\vec{g}(t) = \vec{p} + t\vec{u}$, so that the straight line \vec{g} passes through the points *P* and *Q*.
 - What distance does the point R = (2, -2, 4) to the line \vec{g} ?
- b) Consider the plane *e* of the form $\vec{e}(s,t) = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}$ in \mathbb{R}^3 with the vectors $\vec{p} = (3,2,1)^T$, $\vec{u} = (2,0,1)^T$ and $\vec{v} = (1,3,3)^T$
 - Determine the normal vector \vec{n} , which is orthogonal to the plane of e.
 - Show that the normal vector \vec{n} is really orthogonal to the vectors \vec{u} and \vec{v} .

Assignment 2 [2 Points] barycentric coordinates

Given is a triangle with the edges A = (3,0,0), B = (0,3,0) and C = (0,0,3).

Calculate for both rays the intersection with the triangular plane using barycentric coordinates.

- What are the parameters of the coefficients α and the barycentric coordinates (*s*₁, *s*₂) of the intersections?
- Are the intersections within the triangle (A, B, C)? (Reason necessary)

Hand-in: 26.10.2015, at beginning of the lecture.