
Computer Graphics and
Multimedia Systems

Page 1 of 3

Assignment in Computer Graphics II
– Assignment 4 –
Computer Graphics and

Multimedia Systems Group
David Bulczak, Christoph Schikora

Assignment 1 [2 Points] De Boor algorithm (uniform knot vector)

Given the following plotted de Boor points of a uniform, cubic B-Spline curve and the parameter u = 4 1
3 .

1. Which de Boor points are necessary for the evaluation of the curve at u.

2. Evaluate the curve geometrically and by calculation at u.

D0

D2 D3

D5 D4D1

1

1



Page 2 of 3

Assignment 2 [2 Points] De Boor algorithm (non-uniform knot vector)

Give a cubic B-Spline curve with m = 4, knot vector T = {0,0,0,0,1,2,2,2,2} and control points

D0 =

(
2
7

)
, D1 =

(
2

13

)
, D2 =

(
12
13

)
, D3 =

(
12
5

)
, D4 =

(
8
1

)

1

1
D4

D3

D2

D0

D1

• Calculate D(u) at u = 1. Use the de Boor algorithm.

• Name the knots and control points and draw them into the sketch below.



Page 3 of 3

Assignment 3 [2 Points]

In this task you will extend the (once again updated) curve framework introduced on assignment 02.
This time you have to implement Catmull-Rom curves.

All relevant files for this and future programming tasks, related to curves, can be found in the Curves
folder. In Curve/Curve.hpp you can find the abstract base class for all further curve classes. It provides
three abstract member functions eval, evalCurve, evalConstruct which you will have to implement
for all derived classes at least. Please study this class, read the comments and try to understand it.

To build the project in your preferred development environment use the included CMake project (”CMake-
Lists.txt”). CMake can be downloaded from the following website: http://www.cmake.org/. Use the
instructions on the page
http://www.cmake.org/cmake/help/runningcmake.html and the tutorial page to create the project.

1. Implement Catmull-Rom curves in Curve/CatmullRomCurve.hpp and Curve/CatmullRomCurve.cpp.

• generateCatmullRomControlPoints: In this function you have to compute the tangent points
for all segments of the Catmull-Rom Curve. The input PointContainer points contains all
points that were set by the user in the GUI of this curve framework. Your task is to fill the
catmullRomControlPoints container s.t. it includes all Catmull-Rom tangent points and
the corresponding control points e.g. elements 0 and 1 represent the first control point and the
corresponding tangent control point, elements 2, 3 and 4 represent the first tangent control
point, the corresponding control point and the second tangent control point and so on.

• eval: For a given parameter u you have to compute and return the corresponding curve value.
You can assume that the member variable controPoints contains the points computed in
generateCatmullRomControlPoints. 4 successive points (beginning with a control point)
define a Catmull-Rom segment that should be evaluated in deCasteljau manner.

• evalConstruct: In this function you have to compute and store the intermediate results of the
deCasteljau algorithm for the segment corresponding to parameter u. Again, you can assume
that controlPoints contains all points computed in generateCatmullRomControlPoints.
The results have to be stored in the point hierarchy contructedPoints . It is a C++ std::map
of point containers where the key value represents the algorithm level e.g. contructedPoints .at(0)
returns a PointContainer that contains the input points of a segment.

• evalCurve: In this function the curve has to be evaluated for the whole interval depending on
a given curve resolution. Push the resulting points into the std::vector curvePoints .

Further explanations can be found in the comments of the code.

Hand in: 16.11.2015, at beginning of the lecture or until 10:00 in the mailbox of the chair (next to
room H-A 7107) and send files corresponding to the programming task to johnfr93@gmail.com.


