

Page 1 of 2

Assignment in Computer Graphics II

- Assignment 10 -**Computer Graphics and Multimedia Systems Group** David Bulczak, Christoph Schikora

Assignment 1 [2 Points] Arc length

Given the curve $\mathbf{C}(u) = \begin{pmatrix} u \\ \sqrt{1-u^2} \end{pmatrix}$ in \mathbb{R}^2 for $u \in [0,1]$.

- 1. Sketch the shape of the curve.
- 2. Calculate the arc length function $l_C(u)$ with the help of $\mathbf{C}'(u)$. Use the equation

$$\frac{d}{dx}arcsin(x) = \frac{1}{\sqrt{1 - x^2}}.$$
(1)

3. Curve C should be traversed with constant velocity in the time interval $t \in [0, 1]$. Give the function s(t), which describes the traveled distance for time interval $t \in [0, 1]$. Calculate C(t) with the function s(t).

Assignment 2 [2 Points] Camera coordinate system and up-vector

A camera moves on the spiral path $\mathbf{C}(t) = \begin{pmatrix} \cos(\omega t) \\ vt \\ \sin(\omega t) \end{pmatrix}$, where *v* is the vertical speed and ω is the angular

velocity (radians per second). The camera axis should always be aligned along the tangent direction.

- 1. Calculate the up vector. Assume that the up-vector remains the same for positive and negative direction of rotation.
- 2. How does the sign of its y component behaves?
- 3. Which value does the up vector take for v = 0?

Assignment 3 [2 Points] Spline-based animation

Given the Bezier curve C(u) (shown in the figure) with control points

$$\mathbf{C}_{0} = \begin{pmatrix} 0\\0 \end{pmatrix}, \quad \mathbf{C}_{1} = \begin{pmatrix} 25\\25 \end{pmatrix} \text{ und } \mathbf{C}_{2} = \begin{pmatrix} 25\\0 \end{pmatrix}.$$

Also given curve points for $u_1 = 0.2$, $u_2 = 0.4$, $u_3 = 0.6$, $u_4 = 0.8$:

$$\mathbf{C}(u_1) = \begin{pmatrix} 9\\ 8 \end{pmatrix}, \ \mathbf{C}(u_2) = \begin{pmatrix} 16\\ 12 \end{pmatrix}, \ \mathbf{C}(u_3) = \begin{pmatrix} 21\\ 12 \end{pmatrix}, \ \mathbf{C}(u_4) = \begin{pmatrix} 24\\ 8 \end{pmatrix}.$$

Two lookup tables with arc lengths have to be completed:

Ui	Bogen	Bogen	u_i^*
$u_0 = 0$	$l_0 = 0$	$l_{0}^{*} = 0$	$u_0^* = 0$
$u_1 = 0, 2$	$l_1 =$	$l_{1}^{*} =$	$u_1^* =$
$u_2 = 0, 4$	$l_2 =$	$l_{2}^{*} =$	$u_2^* =$
$u_3 = 0, 6$	$l_3 =$	$l_{3}^{*} =$	$u_3^* =$
$u_4 = 0, 8$	$l_4 =$	$l_{4}^{*} =$	$u_4^* =$
$u_5 = 1,0$	$l_5 =$	$l_{5}^{*} =$	$u_{5}^{*} =$

- 1. For Parameters u_0, \ldots, u_5 compute respectively the approximations l_i between $C(u_0)$ und $C(u_i)$. Insert the values into the table.
- 2. Divide the total length into five equidistant parts and insert the interim values l_1^*, \ldots, l_5^* into the table.
- Determine for the arc lengths l₁^{*},..., l₅^{*} the corresponding parameters u₁^{*},..., u₅^{*}, to get the curve points in equidistant distances.

Hint: For every arc length perform a search in the left table. If the found value is between two table entries then use linear interpolation to obtain the new parameter.

Hand in: 11.1.2015, at beginning of the lecture or until 12:00 in the mailbox of the chair (next to room H-A 7107)