

Seite 1 von 2

Übungen zu Computergraphik I

Übungsblatt 2 –

Lehrstuhl für Computergraphik und Multimediasysteme

Andreas Görlitz, John Rickard, Rene Winchenbach

Abgabe: bis spätestens 02. November 2016, 10 Uhr

Besprechung: Dienstag 08. November und Mittwoch 09. November 2016

Aufgabe 1 Ebenen (2 Punkte) Gegeben sei im \mathbb{R}^3 die Ebene

$$E: \quad \mathbf{P}(\alpha, \beta) = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad \alpha, \beta \in \mathbb{R}.$$

- a) Es sei X die zu E parallele Ebene durch den Punkt $\mathbf{A} = (-3,4,2)^{\mathsf{T}}$. Bestimmen Sie eine Ebenengleichung von X.
- b) Welcher Punkt **B** der Ebene *E* besitzt den kleinsten Abstand zum Punkt **A** und wie groß ist dieser Abstand?
- c) Zeigen Sie, dass der Punkt $\mathbf{C} = (-3,0,4)^{\mathsf{T}}$ in der Ebene X liegt. Lösen Sie hierzu ein einfaches Lineares Gleichungssystem.
- d) Formen Sie die Ebene E in Hesse'sche Normalform um, d.h. in eine Gleichung der Form $\vec{\mathbf{p}} \cdot \hat{\mathbf{n}} = c$, wobei $\hat{\mathbf{n}}$ ein normierter Normalenvektor und \mathbf{p} ein Punkt in der Ebene ist.

Aufgabe 2 Basen (2 Punkte)

Gegeben sei die folgende Basis:

$$\mathcal{V} = \left\{ \vec{\mathbf{v}}_1 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \vec{\mathbf{v}}_2 = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \vec{\mathbf{v}}_3 = \begin{pmatrix} 1 \\ -5 \\ -3 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$$

Ein Vektor $\vec{\mathbf{x}} \in \mathbb{R}^3$ bezüglich der Basis $\mathcal V$ kann geschrieben werden als Linearkombination der Basisvektoren:

$$\vec{\mathbf{x}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^3 x_i \vec{\mathbf{v}}_i$$

Die Basisvektoren der Basis $\mathcal V$ können als Koordinatenachsen eines lokalen Koordinatensystems betrachtet werden. Entsprechend kann ein Vektor bezüglich der Basis $\mathcal V$ als Vektor in diesem lokalen Koordinatensystem interpretiert werden.

a) Sei $\vec{\mathbf{v}}=\begin{pmatrix}2\\0\\0\end{pmatrix}$ ein Vektor bezüglich der Basis $\mathcal V$. Transformieren Sie $\vec{\mathbf{v}}$ um in einen Vektor $\vec{\mathbf{w}}\in\mathbb{R}^3$ bezüglich der natürlichen Basis

$$\left\{\begin{pmatrix}1\\0\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix},\begin{pmatrix}0\\0\\1\end{pmatrix}\right\}\subseteq\mathbb{R}^3.$$

b) Finden Sie eine Matrix \mathbf{M} , die allgemein einen Vektor $\vec{\mathbf{v}} \in \mathbb{R}^3$ bzgl. der Basis \mathcal{V} in einen Vektor $\vec{\mathbf{w}} \in \mathbb{R}^3$ bzgl. der natürlichen Basis transformiert.

Hinweis: Prüfen Sie Ihr Ergebnis anhand der Einheitsvektoren $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ in \mathcal{V} .

c) Finden Sie eine Matrix \mathbf{N} , die Vektoren bezüglich der natürlichen Basis in Vektoren bezüglich $\mathcal V$ transformiert.