
Computer Graphics and
Multimedia Systems

Page 1 of 3

Assignment in Computer Graphics II
– Assignment 7 –
Computer Graphics and

Multimedia Systems Group
Marcus Kluge, Dmitri Presnov

Assignment 1 [2 Points] Knot Insertion (Böhm’s Algorithm) (non-uniform knot vector)

Give a cubic B-Spline curve with m= 7, knot vector T = {0,0,0,0,1,2,3,3,4,5,5,5,5} and control points

D0 =

(
1
4

)
, D1 =

(
−3
−1

)
, D2 =

(
−4
−9

)
, D3 =

(
2
3

)
,

D4 =

(
2
7

)
, D5 =

(
6
3

)
, D6 =

(
9
11

)
, D7 =

(
8

13

)
,

• Insert three times a knot with u = 2.5 using Böhm’s algorithm.

• Name the knots and control points of the resulting curve.

Assignment 2 [2 Points] Evaluation of TP-Bézier-surfaces

Given the bi-quadratic Bézier-surface with control points

C00 =

0
2
2

, C10 =

4
2
6

, C20 =

12
2
2

, C01 =

0
6
6

, C11 =

 4
6

10


C21 =

12
6
6

, C02 =

 0
14
2

, C12 =

 4
14
6

, C22 =

12
14
2


1. Evaluate twice the surface using the two-stage de Casteljau algorithm for the parameters (0.5,0.5):

• First in u and then in v direction

• Then first in v and then in u direction.

2. Determine the surface normal n̂ for the parameters (0.0,0.0) and (1.0,1.0)!

3. Determine the surface normal n̂ for the parameters (0.5,0.5).

Assignment 3 [2 Points] Surface Programming task

In this task you will implement Bezier and B-Spline surfaces analogously to previous assignments related
to curves. Download the framework surface-framework.zip and take an initial look on the code.



Page 2 of 3

All relevant files for this programming tasks, related to surfaces, can be found in the Surface folder. In
Surface/Surface.hpp you can find the abstract base class for all further surface classes. It provides
three abstract member functions eval, evalSurface, evalConstruct which you will have to imple-
ment for all derived classes at least. Please study this class, read the comments and try to understand
it.

File vertices.txt contains the initially loaded vertices. Each row represents one vertex. Feel free to
use it for experiments.

To build the project in your preferred development environment use the included CMake project (”CMake-
Lists.txt”). CMake can be downloaded from the following website: http://www.cmake.org/. Use the
instructions on the page http://www.cmake.org/cmake/help/runningcmake.html
and the tutorial page to create the project.

1. Implement Bezier surfaces in Surface/BezierSurface.hpp and Surface/BezierSurface.cpp.

• eval: In this function you have to evaluate the Bezier surface by using the dual-step de Castel-
jau algorithm algorithm. You can assume that controlPoints contains all control points.
This time controlPoints is an std::vector<std::vector<glm::vec4>>. This reflects
the two dimension of the surface definition. Thus to access control point C01 you have to use
controlPoints .at(0).at(1).

• evalConstruct: In this function you have to compute and store the intermediate results of
the dual-step de Casteljau algorithm. The results have to be stored in contructedPoints .
It is a C++ std::map of two dimensional vectors. The key value represents (as in our curve
implementations) the level of the algorithm iteration. Since we have to deal with two dimensions
the structure of the map is the following one:

– key=0: This element should contain all input points.

– key ∈ {1, . . . ,nu}: These elements should contains the 1st, 2nd, ..., nu-th iteration steps
of the algortihm in the first direction.

– key ∈ {nu+1, . . . ,nu+nv}: These elements shoudl contain the 1st, 2nd, ..., nv-th iteration
step in the algrithm second direction.

In your implementation you have to determine the degrees in both direction (see nU and nV in
the code). Based on this the the constructedPoints map is initialized properly. Further, as in
eval you have to perform both steps of the dual-step de Casteljau algorithm, but additionally
add the interation results to the corresponding map elements e.g. constructedPoints .at(2) to
access all intermediate results from the second step of the algorithm in first direction. To get
the result for a specific step in one direction you can use contructedPoints .at(2).at(step). To
access them for the second direction you have to use an offset that is already set in the code
e.g. constructedPoints .at(2+offset).

• evalSurface: In this function the surface has to be evaluated for the whole interval depending
on a given resolution. Push the resulting points into the std::vector<std::vector<glm::vec4>>
surfacePoints .

2. Implement BSpline surface in Surface/BSplineSurface.hpp and Suface/BSplineSurface.cpp.

• eval: In this function you have to implement B-Spline surfaces by using the basis functions.
You can assume that controlPoints contains all initial de Boor points and that knotVectorS ,
knotVectorT contains the currently set knot vectors.



Page 3 of 3

Total points after sheet 7: 34 of 70.

Hand in: Until 31.05.2018 12:00 o’clock in mailbox of our chair (next to room 7115) and the pro-
gramming assignment via e-mail (jan.mussmann@student.uni-siegen.de)..


