
Computer Graphics and
Multimedia Systems

Page 1 of 2

Assignment in Computer Graphics II
– Assignment 6 –
Computer Graphics and

Multimedia Systems Group
Markus Kluge, Dmitri Presnov, Jan Mußmann

Assignment 1 [2 Points] De Boor algorithm (non-uniform knot vector)

Give a cubic B-Spline curve with m = 4, knot vector T = {0,0,0,0,1,2,2,2,2} and control points

D0 =

(
2
7

)
, D1 =

(
2

13

)
, D2 =

(
12
13

)
, D3 =

(
12
5

)
, D4 =

(
8
1

)

1

1
D4

D3

D2

D0

D1

• Calculate D(u) at u = 1. Use the de Boor algorithm.

• Name the knots and control points and draw them into the sketch below.

Assignment 2 [4 Points]

B-Spline curves (programming)

In this task you will extend the curve framework introduced with assignment 03. This time you have to
implement B-Spline curves.



Page 2 of 2

All relevant files for this and future programming tasks, related to curves, can be found in the Curves
folder. In Curve/Curve.hpp you can find the abstract base class for all further curve classes. It provides
three abstract member functions eval, evalCurve, evalConstruct which you will have to implement
for all derived classes at least. Please study this class, read the comments and try to understand it.
Everything else can be assumed to be a black box.

To build the project in your preferred development environment use the included CMake project (”CMake-
Lists.txt”). CMake can be downloaded from the following website: http://www.cmake.org/. Use the
instructions on the page
http://www.cmake.org/cmake/help/runningcmake.html and the tutorial page to create the project.

1. Implement B-Spline curves in Curve/BSplineCurve.hpp and Curve/BSplineCurve.cpp.

• omega: In this function you have to implement the weighting factor that is used to evaluate a
B-Spline basis function. Use parameter r to distinguiish between omegar and omegal .

• basisFunction: In this function you have to implement the actual basis functions Nn
i (u) that

are used for B-Spline curve representation. Thus the parameter n represents the B-Spline
degree, i the i-th basis function. u is the parameter at which the basis functions has to be
evaluated. Additionally this functions provides a parameter t that represents the knot vector
(std::vector).

• evalWithBasisFunction: In this function you will have to evaluate the B-Spline curve for
parameter u by using the basis functions.

• alpha: In this functions you have to implement the weighting factor that is used in de Boor’s
algorithm to compute points recursively.

• evalNextLevel: For a given array of points in this function you have to implement the recur-
sion that determines the point of a next iteration.

• eval: In this function you have to evaluate the B-Spline curve by using de Boor’s algorithm.
You can assume that controlPoints contains all de Boor points set by the user and that
knotVector contains the currently set knot vector. The class member variable degree rep-
resents the current set B-Spline degree.

• evalConstruct: In this function you have to compute and store the intermediate results of
the de Boor’s algorithm. The results have to be stored in the std::map contructedPoints .

HINT: To simplify some indexing we recommend to use std::map instead of std::vector to store
and access points in algorithms you have to implement. This way you can use arbitrary indices while
std::vector limits them by the current container size. For that purpose we have provided two aliases
PointMap (std::map<unsigned, glm::vec3) and IterationMap(std::map<unsigned, PointMap).
Feel free to use them for your algorithm implementation. Take a look on the corresponding documentation
http://www.cplusplus.com/reference/map/map/.

Further explanations can be found in the comments of the code.

Hand in: Until 16.05.2019 12:15 o’clock in mailbox of our chair (next to room 7115) and the pro-
gramming assignment via e-mail (jan.mussmann@student.uni-siegen.de)..


