

Page 1 of 3

Assignment in Computer Graphics II - Assignment 11 -

Computer Graphics and Multimedia Systems Group

Markus Kluge, Dmitri Presnov, Jan Mußmann

Assignment 1 [2 Points] Rotation

Name the quaternion that corresponds to a rotation by angle π around the z-axis.

- 1. Convert the quaternion into a rotation matrix.
- 2. Show that both representations are equal for $\mathbf{w} = \begin{pmatrix} 0 & 4 & 2 \end{pmatrix}^T$

Annotation: Please indicate in each case the complete solution.

Assignment 2 [2 Points] Arc length

Given the curve $\mathbf{C}(u) = \begin{pmatrix} u \\ \sqrt{1-u^2} \end{pmatrix}$ in \mathbb{R}^2 for $u \in [0,1]$.

- 1. Sketch the shape of the curve.
- 2. Calculate the arc length function $l_C(u)$ with the help of $\mathbf{C}'(u)$. Use the equation

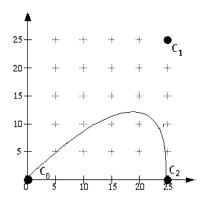
$$\frac{d}{dx}arcsin(x) = \frac{1}{\sqrt{1-x^2}}. (1)$$

3. Curve \mathbf{C} should be traversed with constant velocity in the time interval $t \in [0,1]$. Give the function s(t), which describes the traveled distance for time interval $t \in [0,1]$. Calculate $\mathbf{C}(t)$ with the function s(t).

Assignment 3 [2 Points] Spline-based animation

Given the Bezier curve C(u) (shown in the figure) with control points

$$\mathbf{C}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \mathbf{C}_1 = \begin{pmatrix} 25 \\ 25 \end{pmatrix} \text{ und } \mathbf{C}_2 = \begin{pmatrix} 25 \\ 0 \end{pmatrix}.$$



Also given curve points for $u_1 = 0.2$, $u_2 = 0.4$, $u_3 = 0.6$, $u_4 = 0.8$:

$$\mathbf{C}(u_1) = \binom{9}{8}, \ \mathbf{C}(u_2) = \binom{16}{12}, \ \mathbf{C}(u_3) = \binom{21}{12}, \ \mathbf{C}(u_4) = \binom{24}{8}.$$

Two lookup tables with arc lengths have to be completed:

u_i	Bogen
$u_0 = 0$	$l_0 = 0$
$u_1 = 0, 2$	$l_1 =$
$u_2 = 0,4$	$l_2 =$
$u_3 = 0,6$	$l_3 =$
$u_4 = 0,8$	$l_4 =$
$u_5 = 1,0$	$l_5 =$

Bogen	u_i^*
$l_0^* = 0$	$u_0^* = 0$
$l_1^* =$	$u_1^* =$
$l_2^* =$	$u_2^* =$
$l_3^* =$	$u_3^* =$
$l_4^* =$	$u_4^* =$
$l_5^* =$	$u_5^* =$

- 1. For Parameters u_0, \ldots, u_5 compute respectively the approximations l_i between $\mathbf{C}(u_0)$ und $\mathbf{C}(u_i)$. Insert the values into the table.
- 2. Divide the total length into five equidistant parts and insert the interim values l_1^*,\dots,l_5^* into the table.
- 3. Determine for the arc lengths l_1^*, \dots, l_5^* the corresponding parameters u_1^*, \dots, u_5^* , to get the curve points in equidistant distances.

Hint: For every arc length perform a search in the left table. If the found value is between two table entries then use linear interpolation to obtain the new parameter.

Assignment 4 [2 Points] Form Control

Given the following Ease-function:

$$\mathsf{ease}_{\mathsf{exp}}(t) = \left\{ \begin{array}{ll} \frac{e^{2t} - 2t - 1}{2e - 4} & t \in [0, \frac{1}{2}] \\ \\ 1 - \left(\frac{e^{2(1 - t)} + 2t - 3}{2e - 4}\right) & t \in [\frac{1}{2}, 1] \end{array} \right.$$

- 1. Which velocity curve results from this Ease-function?
- 2. Let v_0 be a speed. Determine an Ease-function of the form

$$ease_{exp}^{v_0}(t) = c \cdot ease_{exp}(t),$$

which obtains an acceleration of 0 to v_0 in the time t=0 to $t=\frac{1}{2}$, where c is a sought (gesuchter) constant term.

Note: It is sufficient to consider the definition on the interval $t \in [0, \frac{1}{2}].$

Total points after sheet 11: 64 of 72.

Hand in: Until 27.06.2019 12:15 p.m. in mailbox of our chair (next to room 7115).