Pattern Recognition Lecture "Linear Classifiers"

Prof. Dr. Marcin Grzegorzek

Research Group for Pattern Recognition www.pr.informatik.uni-siegen.de

Institute for Vision and Graphics University of Siegen, Germany

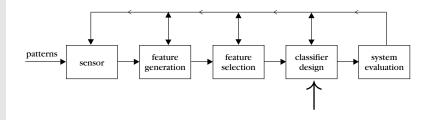
Pattern Recognition Chain

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods



Overview

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

- 1 Introduction
- 2 Linear Discriminant Functions and Decision Hyperplanes
 - 3 The Perceptron Algorithm
- 4 Least Squares Methods
- 5 Support Vector Machines

Overview

Introduction

Linear Discriminant Functions and Decision Hyperplanes

Perceptron Algorithm

The

Least Squares Methods

Support Vector Machines

1 Introduction

- 2 Linear Discriminant Functions and Decision Hyperplanes
 - 3 The Perceptron Algorithm
- 4 Least Squares Methods
- 5 Support Vector Machines

Introducing Example

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines

Known

- A two-class problem $\Omega = \{\omega_1, \omega_2\}$ in a 2D feature space $\mathbf{x} = [x_1, x_2]^{\mathrm{T}}$ is considered.
- The classifier is given by

$$y=2x_1+x_2$$

and

$$\begin{cases} y > 5 \Rightarrow i = 1 \\ y \le 5 \Rightarrow i = 2 \end{cases}$$

Task

• Find the decision line!

Solution

Introduction

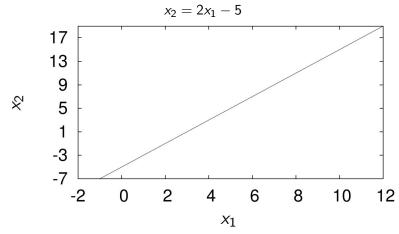
Linear Discriminant Functions and Decision Hyperplanes

Perceptron Algorithm Least Squares

The

Methods

Vector Machines Yes, it is that simple as it sounds. The decision line is just given by



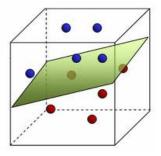
Another Example for Linear Classification

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods



Confusing Notation

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Weight Vector without Threshold	Weight Vector with Threshold
$\mathbf{w} = [w_1, \dots, w_l]^{\mathrm{T}}$	$\mathbf{w} = [w_1, \dots, w_l, w_0]^{\mathrm{T}}$
$\mathbf{x} = [x_1, \dots, x_l]^{\mathrm{T}}$	$\mathbf{x} = [x_1, \dots, x_I, 1]^{\mathrm{T}}$
$\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = 0$	$\mathbf{w}^{\mathrm{T}}\mathbf{x}=0$

Overview

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines 1 Introduction

2 Linear Discriminant Functions and Decision Hyperplanes

3 The Perceptron Algorithm

4 Least Squares Methods

Decision Hyperplanes for I-Dimensions (1)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines Let us focus on the two-class problem and consider linear discriminant functions. The decision hypersurface in the *I*-dimensional feature space is then given by

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} = 0$$

 The dimensionality problem (w ∈ IR^{I+1}, but feature vectors have I elements) is overcome by increasing the dimensionality of each feature vector, so that

$$\mathbf{x} = [x_1, x_2, \dots, x_l, 1]^{\mathrm{T}}$$

This does not change anything in the linear classification process.

Decision Hyperplanes for I-Dimensions (2)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Vector Machines • If x_1 and x_2 are two points on the decision hyperplane, then the following is valid

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{1} = \mathbf{w}^{\mathrm{T}}\mathbf{x}_{2} = 0$$

$$\updownarrow$$

$$\mathbf{w}^{\mathrm{T}}(\mathbf{x}_{1} - \mathbf{x}_{2}) = 0$$

 Since the difference vector x = x₁ - x₂ obviously lies on the decision hyperplane, it is apparent that the weight vector w is orthogonal to the decision hyperplane.

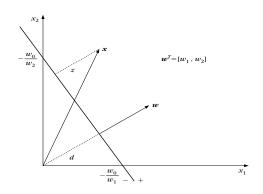
Decision Hyperplanes for I-Dimensions (3)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods



$$d = rac{|w_0|}{\sqrt{w_1^2 + w_2^2}}$$
 $z = rac{|g(\mathbf{x})|}{\sqrt{w_1^2 + w_2^2}}$

Overview

Introduction

Linear Discriminant Functions and Decision Hyperplanes

Perceptron Algorithm

The

Least Squares Methods

- 1 Introduction
- 2 Linear Discriminant Functions and Decision Hyperplanes
 - 3 The Perceptron Algorithm
- 4 Least Squares Methods
- 5 Support Vector Machines

Problem Statement

Problem

How to compute the unknown parameters w_1, \ldots, w_l, w_0 ?

Assumptions

The two classes ω_1 and ω_2 are linearly separable, i. e., there exist a hyperplane $\widehat{\mathbf{w}}$ such that

$$\widehat{\mathbf{w}}^{\mathrm{T}}\mathbf{x} > 0; \qquad \forall \mathbf{x} \in \omega_1$$

$$\forall \mathbf{x} \in \omega_1$$

$$\hat{\mathbf{w}}^{\mathrm{T}}\mathbf{x} < 0; \qquad \forall \mathbf{x} \in \omega_2$$

Approach

The problem will be solved as an optimisation task. Therefore, we need:

- an appropriate cost function
- an algorithmic scheme to optimise it

Linear Discriminant Decision

The Perceptron Algorithm

Least Squares Methods

Vector

Perceptron Cost Function - Definition

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines • As cost function the perceptron cost will be used:

$$J(\mathbf{w}) = \sum_{\mathbf{x} \in Y} (\delta_{x} \mathbf{w}^{\mathrm{T}} \mathbf{x})$$

- Y subset of training vectors misclassified by the hyperplane w
- The variable δ_X is chosen so that:

$$\begin{cases} \mathbf{x} \in \omega_1 & \Rightarrow & \delta_{\mathbf{x}} = -1 \\ \mathbf{x} \in \omega_2 & \Rightarrow & \delta_{\mathbf{x}} = +1 \end{cases}$$

Perceptron Cost Function - Properties

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

- The perceptron cost is not negative. It becomes zero when $Y=\emptyset$, that is, if there are no misclassified vectors ${\bf x}$
- Indeed, if $\mathbf{x} \in \omega_1$ and it is misclassified, then $\mathbf{w}^T\mathbf{x} < 0$ and $\delta_x < 0$. Thus, the product is positive
- The perceptron cost function is continuous and piecewise linear

Minimisation of the Perceptron Cost Function (1)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines • The iterative minimisation works according to:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \rho_t \left. \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} \right|_{\mathbf{w} = \mathbf{w}(t)}$$

- w is the weight vector at the iteration step no. t
- ρ_t is a positive real number chosen manually.

Minimisation of the Perceptron Cost Function (2)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines • From the perceptron definition and the points where this is valid, we get

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \sum_{\mathbf{x} \in Y} \delta_{\mathbf{x}} \mathbf{x}$$

• Thus, the iterative minimisation of the cost function from the previous slide can be written as

$$\mathbf{w}(t+1) = \mathbf{w}(t) -
ho_t \sum_{\mathbf{x} \in Y} \delta_{x} \mathbf{x}$$

The Perceptron Algorithm - Pseudocode

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares

- Choose **w**(0) randomly
- Choose ρ_0
- t = 0
- Repeat
 - Set Y = ∅
 - For i = 1 to K
 - If $\delta_{x_j} \mathbf{w}(j)^{\mathrm{T}} \mathbf{x}_j \geq 0$ then $Y = Y \cup \{\mathbf{x}_j\}$
 - End For
 - $\mathbf{w}(t+1) = \mathbf{w}(t) \rho_t \sum_{\mathbf{x} \in Y} \delta_x \mathbf{x}$
 - Adjust ρ_t
 - Iterate t = t + 1
- Until Y = ∅

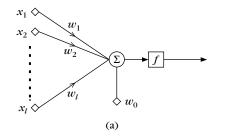
The Basic Perceptron Model

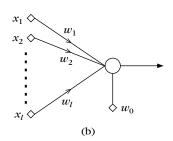
Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods





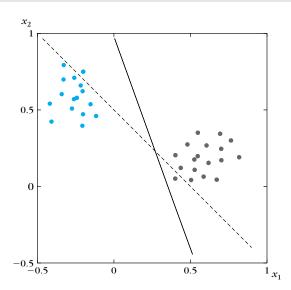
Example for the Perceptron Algorithm (1)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods



Example for the Perceptron Algorithm (2)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines

Known

Decision line after the iteration no. t is given by

$$x_1 + x_2 - 0.5 = 0 \Leftrightarrow \mathbf{w}(t) = [1, 1, -0.5]^{\mathrm{T}}$$

- With $\rho_t = 0.7$
- ullet Vectors misclassified: $[0.4,0.05]^{\mathrm{T}}$ and $[-0.2,0.75]^{\mathrm{T}}$

Unknown

• The decision line after the iteration no. t + 1:

$$\mathbf{w}(t+1) = \left| egin{array}{c} w_1(t+1) \ w_2(t+1) \ w_0(t+1) \end{array}
ight| = ?$$

Example for the Perceptron Algorithm (3)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines

$$\mathbf{w}(t+1) = \begin{bmatrix} 1\\1\\-0.5 \end{bmatrix} - 0.7(-1) \begin{bmatrix} 0.4\\0.05\\1 \end{bmatrix} - 0.7(+1) \begin{bmatrix} -0.2\\0.75\\1 \end{bmatrix}$$

$$\updownarrow$$

$$\mathbf{w}(t+1) = \begin{bmatrix} 1.42\\0.51\\0.5 \end{bmatrix}$$

Note that the dimensionality of the misclassified vectors has been increased by one!

Overview

Introduction

Linear Discriminant Functions and Decision Hyperplanes

Perceptron Algorithm

The

Least Squares Methods

- 1 Introduction
- 2 Linear Discriminant Functions and Decision Hyperplanes
 - 3 The Perceptron Algorithm
 - 4 Least Squares Methods
 - 5 Support Vector Machines

Mean Square Error Estimation

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines

- Linear classifiers are fast, thus, they sometimes are applied even for classes that are not linearly separable.
- In this case, the desired output of a classifier $y(\mathbf{x}) = y$ is sometimes not equal to the real output $\mathbf{w}^{\mathrm{T}}\mathbf{x}$.
- The cost function expresses the mean square error (MSE) between the desired and the true outputs

$$J(\mathbf{w}) = E[|y - \mathbf{x}^{\mathrm{T}}\mathbf{w}|^{2}]$$

• To find the optimal separating hyperplane $\hat{\mathbf{w}}$, the cost function is minimised with regard to $\mathbf{w} = [w_1, \dots, w_l, w_0]^T$

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$$

Sum of Error Squares Estimation (1)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

Algorithm Least Squares Methods

- Two-class problem with not separable classes is considered.
- The cost function here is the sum of error squares

$$J(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^{\mathrm{T}} \mathbf{w})^2$$

- $y_i \in \{-1, 1\}$ is the desired output of the classifier for \mathbf{x}_i
- $\mathbf{x}_i^{\mathrm{T}}\mathbf{w}$ is the real output of the classifier for \mathbf{x}_i
- In order to find the optimal separating hyperplane $\widehat{\mathbf{w}}$, the cost function has to be minimised with respect to \mathbf{w}

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 0 \quad \Leftrightarrow \quad \sum_{i=1}^{N} \mathbf{x}_{i} (y_{i} - \mathbf{x}_{i}^{\mathrm{T}} \widehat{\mathbf{w}}) = 0$$
 (1)

Sum of Error Squares Estimation (2)

• The minimisation term (1) can be rewritten as follows:

$$\left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}}\right) \widehat{\mathbf{w}} = \sum_{i=1}^{N} (\mathbf{x}_{i} y_{i})$$
 (2)

For the sake of formulation let us define

$$X = \begin{bmatrix} \mathbf{x}_{1}^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_{N}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} x_{1,1} & \dots & x_{1,l} & 1 \\ \vdots & \ddots & \vdots & \vdots \\ x_{N,1} & \dots & x_{N,l} & 1 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{N} \end{bmatrix}$$
(3)

 X contains all training feature vectors for both classes, and y is a vector consisting of the corresponding desired responses y_i ∈ {-1,1}.

Introduction

Linear Discriminant Functions and Decision Hyperplanes

Perceptron Algorithm

Least Squares Methods

Vector Machines

Sum of Error Squares Estimation (3)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

Perceptron Algorithm

The

Least Squares Methods

Support Vector Machines • Using both, (2) and (3) the following is true

$$(X^{\mathrm{T}}X)\widehat{\mathbf{w}} = X^{\mathrm{T}}\mathbf{y}$$

• Finally, the optimal separating hyperplane is given by

$$\widehat{\mathbf{w}} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\mathbf{y}$$

Sum of Error Squares Estimation - Example

Introduction

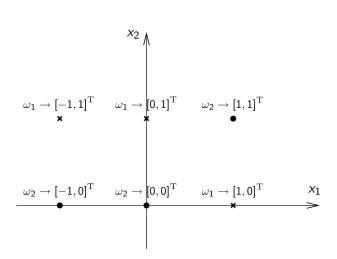
Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support

Vector Machines



Sum of Error Squares Estimation - Example

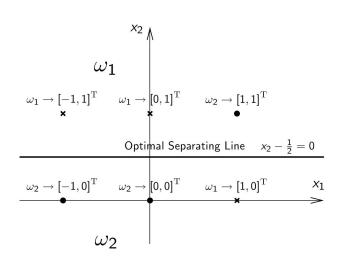
Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron

Algorithm

Least Squares Methods



Overview

Introduction

Linear Discriminant Functions and Decision Hyperplanes

Algorithm

Least Square

The

Least Squares Methods

- 1 Introduction
- 2 Linear Discriminant Functions and Decision Hyperplanes
 - 3 The Perceptron Algorithm
- 4 Least Squares Methods
- 5 Support Vector Machines

SVMs for Linearly Separable Classes (1)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Algorithm Least Squares Methods

Support Vector Machines

- A two-class problem $\Omega = \{\omega_1, \omega_2\}$
- $\mathbf{x}_{i=1,...,N}$ are all training feature vectors
- The goal, once more, is to design a hyperplane¹

$$g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = 0$$

that classifies correctly all the training feature vectors.

¹Note that $\mathbf{w} = [w_1, \dots, w_l]^{\mathrm{T}}$ and w_0 are treated separately here.

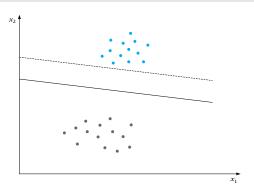
SVMs for Linearly Separable Classes (2)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods



- As we have seen for the perceptron algorithm, such a hyperplane is not unique.
- However, the full-line secures higher generalisation performance of the classifier, because it leaves the maximum margin from both classes.

SVMs for Linearly Separable Classes (3)

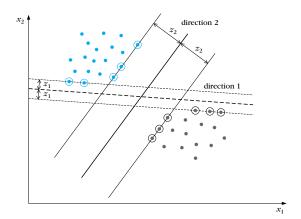
Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines • The goal is to search for the direction that gives the maximum possible margin.



SVMs for Linearly Separable Classes (4)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines • The distance of a point from a hyperplane is given by

$$z = \frac{|g(\mathbf{x})|}{||\mathbf{w}||}$$

• w and w_0 are now scaled so that the value $|g(\mathbf{x})|$ at the nearest points in both classes is equal to 1:

$$\left\{ \begin{array}{ll} \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 \geq 1 & \quad \forall \mathbf{x} \in \omega_1 \\ \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 \leq -1 & \quad \forall \mathbf{x} \in \omega_2 \end{array} \right.$$

• In this case, the margin is equal to

$$\frac{1}{||\mathbf{w}||} + \frac{1}{||\mathbf{w}||} = \frac{2}{||\mathbf{w}||}$$

SVMs for Linearly Separable Classes (5)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron

Algorithm

Least Squares Methods

Support Vector Machines • In order to make the margin maximum, the following cost function has to be minimised

$$J(\mathbf{w}, w_0) = \frac{1}{2}||\mathbf{w}||^2$$

subject to

$$y_i(\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + w_0) \geq 1; \quad \forall i = 1, 2, \dots, N$$

SVMs for Linearly Separable Classes (6)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines • Using the so called Lagrange function $\mathcal{L}(\mathbf{w}, w_0, \lambda)$ the Karush-Kuhn-Tucker (KKT) conditions have to be satisfied to minimise the cost function

(i)
$$\frac{\partial}{\partial \mathbf{w}} \mathcal{L}(\mathbf{w}, w_0, \boldsymbol{\lambda}) = \mathbf{0}$$

(ii)
$$\frac{\partial}{\partial w_0} \mathcal{L}(\mathbf{w}, w_0, \boldsymbol{\lambda}) = 0$$

(iii)
$$\lambda_i \geq 0$$
; $\forall i = 1, \ldots, N$

(iv)
$$\lambda_i[y_i(\mathbf{w}^T\mathbf{x}_i + w_0) - 1] = 0; \quad \forall i = 1,..., N$$

SVMs for Linearly Separable Classes (7)

Introduction

Linear Discriminant Functions and Decision Hyperplanes

Perceptron Algorithm

Least Squares Methods

Support Vector Machines • The Lagrange function itself is defined as

$$\mathcal{L}(\mathbf{w}, w_0, \boldsymbol{\lambda}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} - \sum_{i=1}^{N} \lambda_i [y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x}_i + w_0) - 1]$$

 Applying the KKT criteria (i) and (ii) for the Lagrange function

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$$

$$\sum_{i=1}^{N} \lambda_i y_i = 0$$

SVMs for Linearly Separable Classes - Discussion

Introduction

Linear Discriminant Functions and Decision Hyperplanes

The Perceptron Algorithm

Least Squares Methods

Support Vector Machines The Lagrange multipliers can be either zero or positive. Thus, the vector \mathbf{w} of the optimal solution is a linear combination of $N_s \leq N$ feature vectors that are associated with $\lambda_i \neq 0$.

$$\mathbf{w} = \sum_{i=1}^{N_s} \lambda_i y_i \mathbf{x}_i$$

These are known as **support vectors** and the optimum hyperplane classifier as **support vector machine**.