Pattern Recognition Lecture Introduction and Outline

Prof. Dr. Marcin Grzegorzek

Research Group for Pattern Recognition Institute for Vision and Graphics University of Siegen, Germany

Marcin's Short CV

Time Period	University	Research Focus
1996–2002	SUT Gliwice	Image Segmentation
2002–2006	FAU Erlangen	Object Recognition
2006–2008	QMUL London	Multimedia Retrieval
2008–2010	Univ. Koblenz	Semantic Multimedia
2010–	Univ. Siegen	Pattern Recognition
2012–	UE Katowice	Multimedia Analysis

Our Place at the University of Siegen

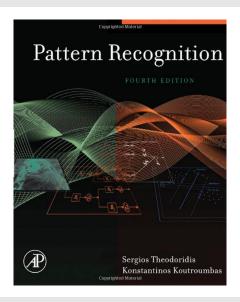
University of Siegen

Faculty IV: Science and Engineering

Depart. for Electrical Eng. and Computer Science

Institute for Vision and Graphics

Computer Graphics and Multimedia Systems Realtime Learning Systems Media Systems Pattern Recognition


RTG 1564 – "Imaging New Modalities"

	Sensor Development	Mono-modal Techniques	Multi-modal Techniques	
Person Detection Biometry	A1 - Colorimetric Arrays	B1 - Biometrics by Multispectral Scattering Models	C1 - Face Recognition from 2D/3D Sensor Data	
Material Analysis	A2 - THz Sensor Development	B2 - Material Detection in the THz Range		C3 - Information Security
Scene Observation	A3 - Multi Camera 2D/3D Technology	B3 - Synthetic Aperture in the THz Range	C2 - Visual Analysis of Multimodal Sensor Data	

Topics

Date	No	Topic
17/04 18/04 02/05 08/05 15/05 05/06 06/06 26/06 03/07 10/07	PR01 PR02 PR03 PR04 PR05 PR06 PR07 PR08 PR09 PR10	Introduction and Outline Feature Generation Feature Selection Linear Classifiers Bayes Decision Theory Context-Dependent Classification Clustering Basics Sequential Clustering Hierarchical Clustering Summary, Applications, and Conclusions

Accompanying Book

The Term "Pattern Recognition"

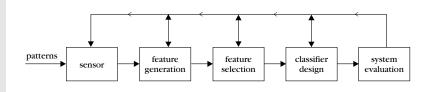
Pattern Recognition

is a field whose objective is to assign an object or event to one of a number of categories, based on features derived to emphasise commonalities. In practice, features are often extracted from sensory signals, such as images or audio.

Pattern Recognition

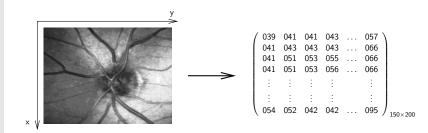
is the act of taking in raw data and taking an action based on the category of the pattern.

Terminology


What is the difference between

- Image Processing,
- Image Recognition, and
- Pattern Recognition ?

PR Application Fields


- Machine Vision
- Character Recognition
- Computed-Aided Diagnosis
- Speech Recognition
- Data Mining and Knowledge Discovery
- ..

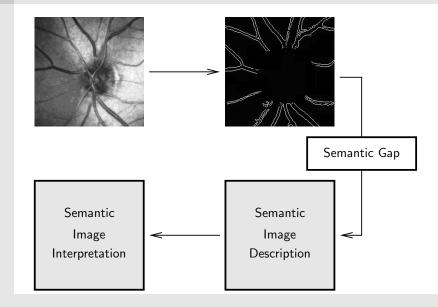
Basic Stages of Pattern Analysis

- The stages are highly dependent on each other.
- In order to design an optimal pattern recognition system, they all have to be optimised at once.
- Patterns are analysed at different levels of abstraction.
- Integration of background knowledge into the process may be very useful.

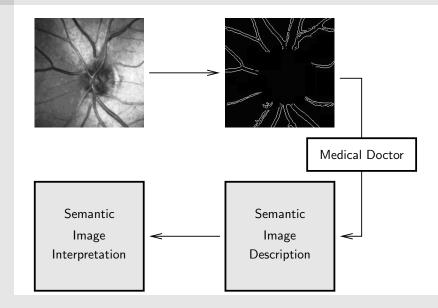
Low-Level Interpretation of Patterns

$$f(x,y) = \begin{pmatrix} f(0,0) & f(0,1) & \dots & f(0,199) \\ f(1,0) & f(1,1) & \dots & f(1,199) \\ \vdots & \vdots & & \vdots \\ f(149,0) & f(149,1) & \dots & f(149,199) \end{pmatrix} ; f(x,y) \in \{0,1,2,\dots,255\}$$

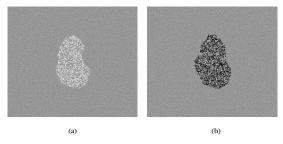
High-Level Interpretation of Patterns



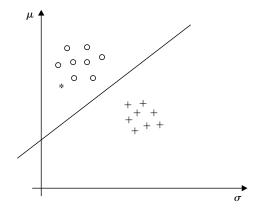
Gray Level Retina Image Papilla Shape - OK Blood Vessel Width - OK


Research Challenges in Pattern Analysis

- 1. Optimisation of the Entire Processing Chain at Once
- 2. Combination of the Different Levels of Abstraction
- 3. Integration of Background Knowledge into the Process


Semantic Gap in Image Understanding

Semantic Gap in Image Understanding

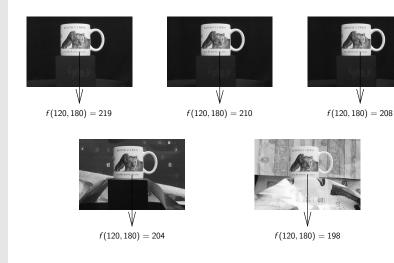


Example for Medical Image Classification

Examples of image regions corresponding to (a) class A and (b) class B.

Example Descriptors for the Image Regions

Plot of the mean value μ and standard deviation σ for a number of different images originating from class A (\circ) and class B (+).


Feature Vectors \rightarrow Random Vectors

Descriptors are called feature vectors

$$\mathbf{x} = [x_1, x_2, \dots, x_l]^\mathsf{T}$$

- Each feature vector identifies a single pattern (object)
- Feature vectors are treated as random vectors

Signal Acquisition - Stochastic Process

Bayes Decision Theory for a Two-Class Problem

Known

Classes: $\{\omega_1, \omega_2\}$

A priori probabilities: $P(\omega_1)$ and $P(\omega_2)$ Likelihood density functions: $p(\mathbf{x}|\omega_1)$ and $p(\mathbf{x}|\omega_2)$

Pattern to be classified: $\mathbf{x} = [x_1, x_2, \dots, x_l]^T$

Assumption

The feature vectors can take any value in the *I*-dimensional feature space: $\mathbf{x} = [x_1, x_2, \dots, x_I]^\mathsf{T} \in \mathbb{R}^I$

Unknown

A posteriori probabilities: $P(\omega_1|\mathbf{x})$ and $P(\omega_2|\mathbf{x})$

Learning Strategies

Supervised Learning

assumes that a set of labelled training data is available and the classifier is designed by exploiting this a-priori known information.

Unsupervised Learning

clusters unlabelled training data described by feature vectors into similar groups.

Semi-Supervised Learning

applies both the labelled and unlabelled training for designing a classification system.

Pattern Recognition Live

BERTI - Bundesliga Information System

developed at the Institute for Pattern Recognition, University of Erlangen-Nuremberg and Sympalog Voice Solutions GmbH

Let's talk to BERTI: +49 9131 610017