Pattern Recognition Lecture Hierarchical Clustering

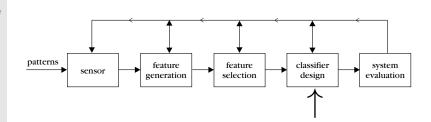
Prof. Dr. Marcin Grzegorzek

Research Group for Pattern Recognition Institute for Vision and Graphics University of Siegen, Germany

Pattern Recognition Chain

Introduction

Agglomerative Algorithms



Overview

Introduction

Agglomerative Algorithms

Divisive Algorithms 1 Introduction

2 Agglomerative Algorithms

Overview

Introduction

Agglomerative Algorithms

Divisive Algorithms 1 Introduction

2 Agglomerative Algorithms

General Idea and Applications

Introduction

Agglomerative Algorithms

- Instead of producing a single clustering (like sequential algorithms), hierarchical algorithms produce a hierarchy of clusterings.
- This kind of algorithm is usually found in the social sciences and biological taxonomy.
- Further fields of application are: medicine, archaeology, computer science, and engineering.

Initial Definitions

Introduction

Agglomerative Algorithms

- Let us recall that $X = \{x_i, i = 1, ..., N\}$ is a set of I-dimensional vectors that are to be clustered.
- Also recall the definition of clustering $\mathbb{R} = \{C_j, j = 1, \dots, m\}$ where $C_j \subset X$.
- A clustering \mathbb{R}_1 containing k clusters is said to be nested in the clustering \mathbb{R}_2 which contains r < k clusters, if each cluster in \mathbb{R}_1 is a subset of a set in \mathbb{R}_2 . Note that at least one cluster of \mathbb{R}_1 is a proper subset of a set in \mathbb{R}_2 ($\mathbb{R}_1 \neq \mathbb{R}_2$).
- If \mathbb{R}_1 is nested in \mathbb{R}_2 we denote it by $\mathbb{R}_1 \sqsubseteq \mathbb{R}_2$.

Examples for the Term "Nested Clusterings"

Introduction

Agglomerative Algorithms

- For example, $\mathbb{R}_1 = \{\{\mathbf{x}_1, \mathbf{x}_3\}; \{\mathbf{x}_4\}; \{\mathbf{x}_2, \mathbf{x}_5\}\}$ is nested in $\mathbb{R}_2 = \{\{\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_4\}; \{\mathbf{x}_2, \mathbf{x}_5\}\}$
- $\bullet \ \, \text{But, } \mathbb{R}_1 \text{ is not nested in } \mathbb{R}_3 = \{\{\textbf{x}_1,\textbf{x}_4\}; \{\textbf{x}_3\}; \{\textbf{x}_2,\textbf{x}_5\}\}.$
- It is clear that a clustering is not nested to itself.

Two Main Categories of Hierarchical Algorithms

Introduction

Agglomerative Algorithms

- Hierarchical algorithms produce a hierarchy of nested clusterings.
- More specifically, these algorithms involve N steps, as many as the number of data vectors.
- At each step t, a new clustering is obtained based on the clustering produced at the previous step t-1.
- There are two main categories of these algorithms, the agglomerative and the divisive hierarchical algorithms.

Agglomerative Algorithms - General Idea

Introduction

Agglomerative Algorithms

- The initial clustering \mathbb{R}_0 for the agglomerative algorithms consists of N clusters, each containing a single element of X.
- A the first step, the clustering \mathbb{R}_1 is produced. It contains N-1 sets, such that $\mathbb{R}_0 \sqsubset \mathbb{R}_1$.
- This procedure continues until the final clustering, \mathbb{R}_{N-1} , is obtained. It contains a single set, that is, the set of data, X. Notice that for the hierarchy of the resulting clusterings, we have:

$$\mathbb{R}_0 \sqsubset \mathbb{R}_1 \sqsubset \cdots \sqsubset \mathbb{R}_{N-1}$$

Divisive Algorithms - General Idea

Introduction

Agglomerative Algorithms

- The divisive algorithms follow the inverse path. The initial clusterings \mathbb{R}_0 consists of a single set, X.
- At the first step the clustering \mathbb{R}_1 is produced. It consists of two sets, such that $\mathbb{R}_1 \sqsubseteq \mathbb{R}_0$.
- This procedure continues until the final clustering \mathbb{R}_{N-1} is obtained. It contains N sets, each consisting of a single element of X. In this case we have

$$\mathbb{R}_{N-1} \sqsubset \mathbb{R}_{N-2} \sqsubset \cdots \sqsubset \mathbb{R}_0$$

Overview

Introduction

Agglomerative Algorithms

Divisive Algorithms 1 Introduction

2 Agglomerative Algorithms

Generalised Agglomerative Scheme (GAS)

function measures the proximity between C_i and C_j . Let t denote the current level of hierarchy. Then, the general agglomerative scheme may be stated as follows:

Let $g(C_i, C_i)$ be a function defined for all possible pairs of clusters of X. This

oduction

Agglomerative Algorithms

- Initialisation
 - Choose $\mathbb{R}_0 = \{C_i = \{x_i\}, i = 1, ..., N\}$
 - t=0
- Repeat:
 - t = t + 1
 - Among all possible pairs of clusters (C_r, C_s) in ℝ_{t-1} find the one, say, (C_i, C_j), such that

$$g(C_i, C_j) = \begin{cases} \min_{r,s} g(C_r, C_s) & \text{if } g \text{ is a dissimilarity function} \\ \max_{r,s} g(C_r, C_s) & \text{if } g \text{ is a similarity function} \end{cases}$$

- Define $C_q = C_i \cup C_j$ and produce the new clustering $\mathbb{R}_t = \{\mathbb{R}_{t-1} \setminus \{C_i, C_j\}\} \cup \{C_q\}$
- Until all vectors lie in a single cluster.

GAS - the Nesting Property

Introduction

Agglomerative Algorithms

- GAS creates a hierarchy of N clusterings, so that each one is nested in all successive clusterings, that is, $\mathbb{R}_{t_1} \sqsubseteq \mathbb{R}_{t_2}$, for $t_1 < t_2$, $t_2 = 1, \ldots, N-1$.
- If two vectors come together into a single cluster at level *t* of the hierarchy, they will remain in the same cluster for all subsequent clusterings.
- A disadvantage of the nesting property is that there is no way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

GAS - Algorithm Complexity

Introduction

Agglomerative Algorithms

Divisive Algorithms • At each level t, there are N-t clusters. Thus, in order to determine the pair of clusters that is going to be merged at the t+1 level,

$$\left(\begin{array}{c}N-t\\2\end{array}\right)\equiv\frac{(N-t)(N-t-1)}{2}$$

pairs of clusters have to be considered.

 Thus, the total number of pairs that have to be examined throughout the whole clustering process is

$$\sum_{t=0}^{N-1} \binom{N-t}{2} = \sum_{k=1}^{N} \binom{k}{2} = \frac{(N-1)N(N+1)}{6}$$

that is, the total number of operations required by an agglomerative scheme is proportional to N^3 . However, the exact complexity of the algorithm depends on the definition of g.

Pattern and Similarity Matrix

Introduction

Agglomerative Algorithms

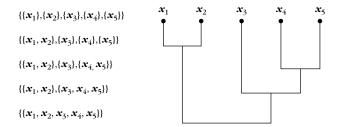
- The pattern matrix D(X) is the $N \times I$ matrix, whose *i*-th row is the transposed *i*-th vector of X.
- The similarity (dissimilarity) matrix P(X) is an $N \times N$ matrix whose (i,j) element equals the similarity $s(\mathbf{x}_i,\mathbf{x}_j)$ (dissimilarity $d(\mathbf{x}_i,\mathbf{x}_j)$) between vectors \mathbf{x}_i and \mathbf{x}_j .

Dendrogram

Introduction

Agglomerative Algorithms

Divisive Algorithms A dendrogram is an effective means of representing the sequence of clusterings produced by an agglomerative algorithm.

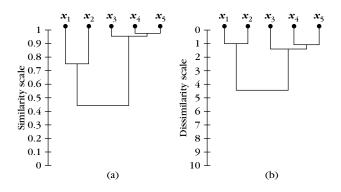


Proximity Dendrogram

Introduction

Agglomerative Algorithms

Divisive Algorithms A proximity dendrogram is a dendrogram that takes into account the level of proximity where two clusters are merged for the first time. We distinguish between similarity and dissimilarity dendrograms.



Matrix Updating Algorithmic Scheme (MUAS)

roductio

Agglomerative Algorithms

Divisive Algorithms

Initialisation

- $\mathbb{R}_0 = \{\{\mathbf{x}_i\}, i = 1, \dots, N\}$
- $P_0 = P(X)$
- t=0

• Repeat:

- t = t + 1
- $\iota = \iota + \iota$
- Find C_i , C_j such that $d(C_i, C_j) = \min_{\substack{r s = 1 \ N: r \neq s}} d(C_r, C_s)$
- Merge C_i , C_j into a single cluster C_q and form $\mathbb{R}_t = \{\mathbb{R}_{t-1} \setminus \{C_i, C_i\}\} \cup \{C_q\}$
- Define a proximity matrix P_t from P_{t-1} by
- Until \mathbb{R}_{N-1} clustering is formed, that is, all feature vectors lie in the same cluster.

¹(a) deleting the two rows and columns that correspond to the merged clusters an (b) adding a new row and a new column that contain the distances between the newl formed cluster and old clusters

Overview

Introduction

Agglomerative Algorithms

Divisive Algorithms 1 Introduction

2 Agglomerative Algorithms

General Idea

roduction

Agglomerativ Algorithms

- The divisive algorithms follow the reverse strategy from that of the agglomerative schemes.
- At the first step, we search for the best possible partition of X into two clusters. The straightforward method is to consider all possible $2^{N-1}-1$ partitions of X into two sets and to select the optimum according to a prespecified criterion.
- This procedure is then applied iteratively to each of the two sets produced in the previous stage.
- The final clustering consists o N clusters, each containing a single vector of X.

Generalised Divisive Scheme (GDS) - Assumptions

roductio

Agglomerative Algorithms

- ullet The t-th clustering contains t+1 clusters.
 - ullet C_{tj} denotes the j-th cluster of the t-th clustering \mathbb{R}_t .
- $g(C_i, C_j)$ is a dissimilarity function² defined for all possible pairs of clusters.
- The initial clustering \mathbb{R}_0 contains only the set of X.

²The GDS can be also formulated for a similarity function, of course.

Generalised Divisive Scheme (GDS)

Introduction
Agglomerative

Algorithms

Divisive Algorithms

Initialisation

- Choose $\mathbb{R}_0 = \{X\}$ as the initial clustering, e.g., $C_{01} = X$.
- t = 0
- Repeat:
 - t = t + 1
 - For i = 1 to t
 - Among all possible pairs of clusters (C_r, C_s) that form a
 partition of C_{t-1,i} find the pair (C¹_{t-1,i}, C²_{t-1,i}) that gives the
 maximum value for g.
 - Next i
 - From the t pairs defined in the previous step choose the one that
 maximises g. Suppose that this is (C¹_{t-1,j}, C²_{t-1,j}).
 - The new clustering is $\mathbb{R}_t = \{\mathbb{R}_{t-1} \setminus \{C_{t-1,j}\}\} \cup \{C_{t-1,j}^1, C_{t-1,j}^2\}$
 - Relabel the clusters of \mathbb{R}_t
- Until each vector lies in a single distinct cluster.