Pattern Recognition Lecture Summary, Applications, and Conclusions

Prof. Dr. Marcin Grzegorzek

Research Group for Pattern Recognition Institute for Vision and Graphics University of Siegen, Germany

Topics

Introduction

Research Overview

Object Recognition

Date	No	Торіс
17/04 18/04 02/05 08/05 15/05 05/06 06/06 26/06 03/07 10/07	PR01 PR02 PR03 PR04 PR05 PR06 PR07 PR08 PR09 PR10	Introduction and Outline Feature Generation Feature Selection Linear Classifiers Bayes Decision Theory Context-Dependent Classification Clustering Basics Sequential Clustering Hierarchical Clustering Summary, Applications, and Conclusions

General Research Vision

Introduction

Research Overview

Object Recognition

Conclusions

Adaptive Learning of Context for Pattern Recognition

Overview

Introduction Research

Overview

Object Recognition 1 Introduction

2 Research Overview

3 Object Recognition

Overview

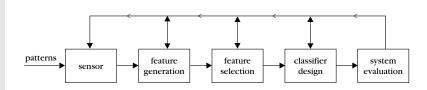
Introduction Research

Overview Object

Recognition

Conclusions

1 Introduction

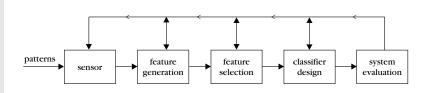

2 Research Overview

3 Object Recognition

Introduction Research

Overview

Object Recognition

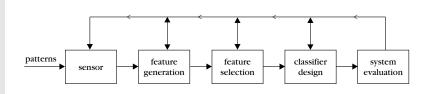


Introduction Research

Overview Object

Recognition

Conclusions

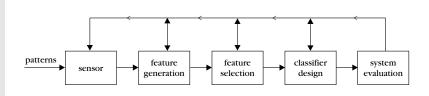


• Adaptive Runtime Optimisation

Introduction Research

Overview Object

Recognition



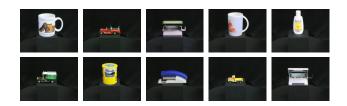
- Adaptive Runtime Optimisation
- Integration of Background Knowledge

Introduction

Research Overview

Object Recognition

- Adaptive Runtime Optimisation
- Integration of Background Knowledge


Scientific Methods for Pattern Recognition

Introduction

Recognition

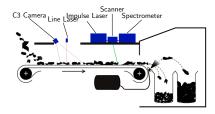
Example

• Generic Appearance-Based Statistical Object Recognition

Properties

- Generic Methodology without Fixing the Application
- Limited Robustness in Real-World Environments

Industrial Systems for Pattern Recognition


Introduction

Overview Object

Recognition

Example

Automatic Sorting of Aluminium Alloys

Properties

- Concrete Application Domain
- Problem-Specific Features
- Limited Portability

Adaptive Learning for Pattern Recognition

Introduction

Overview

Object Recognition

Conclusions

Development Phase

- Generic System for Pattern Recognition
- Multiple Sensors, Features, and Classifiers

Adaptive Learning for Pattern Recognition

Introduction

Overview

Recognition

. .

Development Phase

- Generic System for Pattern Recognition
- Multiple Sensors, Features, and Classifiers

Supervision Phase

- Application for a Concrete Task
- Labelling of Misclassified Patterns by a Supervisor
- Adaptive Optimisation of the Processing Chain

Adaptive Learning for Pattern Recognition

Introduction

Overview

Recognition

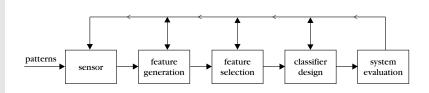
. . .

Development Phase

- Generic System for Pattern Recognition
- Multiple Sensors, Features, and Classifiers

Supervision Phase

- Application for a Concrete Task
- Labelling of Misclassified Patterns by a Supervisor
- Adaptive Optimisation of the Processing Chain


Recognition Phase

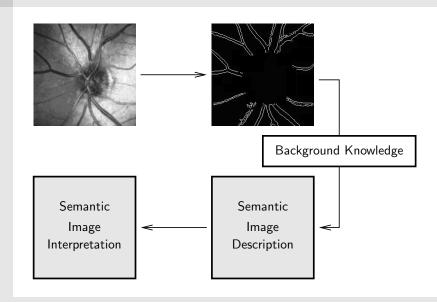
• Further Application without Supervision

Introduction

Research Overview

Object Recognition

- Adaptive Runtime Optimisation
- Integration of Background Knowledge


Semantic Gap in Image Understanding

Introduction Research

Overview

Recognition

Lonciusions

Overview

Introduction

Research Overview

Recognition Conclusions

Object

1 Introduction

2 Research Overview

3 Object Recognition

Introduction

Research Overview

Object Recognition

Object Recognition

- Adaptive Learning of Context for Object Recognition
- Origin: Univ. of Erlangen-Nuremberg

Multimedia Retrieval

- Adaptive Learning of User Preferences based on Relevance Feedback
- Origin: Queen Mary, University of London

Image Understanding

- Integration of High-Level Background Knowledge from Ontologies into Low-Level Image Processing
- Origin: University of Koblenz-Landau

Introduction

Research Overview

Object Recognition

⇒ Object Recognition

- Adaptive Learning of Context for Object Recognition
- Origin: Univ. of Erlangen-Nuremberg

Multimedia Retrieval

- Adaptive Learning of User Preferences based on Relevance Feedback
- Origin: Queen Mary, University of London

Image Understanding

- Integration of High-Level Background Knowledge from Ontologies into Low-Level Image Processing
- Origin: University of Koblenz-Landau

Introduction

Research Overview

Object Recognition

Object Recognition

- Adaptive Learning of Context for Object Recognition
- Origin: Univ. of Erlangen-Nuremberg

→ Multimedia Retrieval

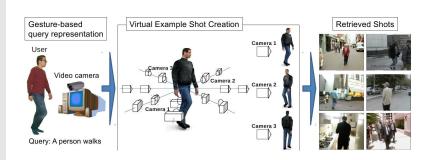
- Adaptive Learning of User Preferences based on Relevance Feedback
- Origin: Queen Mary, University of London

Image Understanding

- Integration of High-Level Background Knowledge from Ontologies into Low-Level Image Processing
- Origin: University of Koblenz-Landau

Multimedia Content Management and Retrieval

la ana al casta a


Research Overview

Object Recognition

Query by Virtual Gesture

Introduction
Research
Overview
Object
Recognition

- Background Knowledge Integration by Domain Ontology
- Adaptive Optimisation by Relevance Feedback

Introduction

Research Overview

Object Recognition

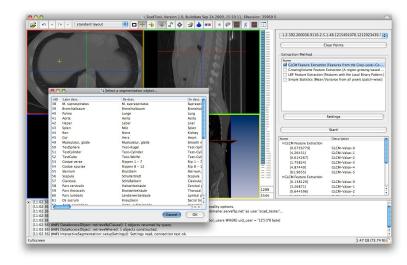
Object Recognition

- Adaptive Learning of Context for Object Recognition
- Origin: Univ. of Erlangen-Nuremberg

Multimedia Retrieval

- Adaptive Learning of User Preferences based on Relevance Feedback
- Origin: Queen Mary, University of London

⇒ Image Understanding

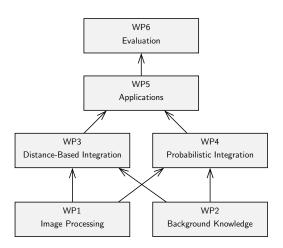

- Integration of High-Level Background Knowledge from Ontologies into Low-Level Image Processing
- Origin: University of Koblenz-Landau

Spacial Reasoning for Medical Image Classification

.....

Research Overview

Object Recognition



Knowledge-Based Image Understanding

Introduction Research

Overview

Object Recognition

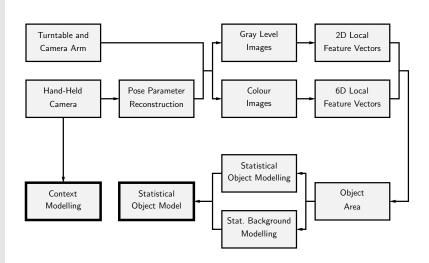
Overview

Introduction

Research Overview

Object Recognition Conclusions 1 Introduction

2 Research Overview

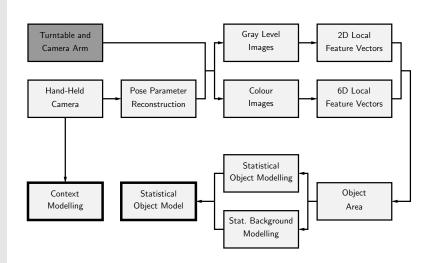

3 Object Recognition

Training Phase

Introduction

Research Overview Object

Recognition

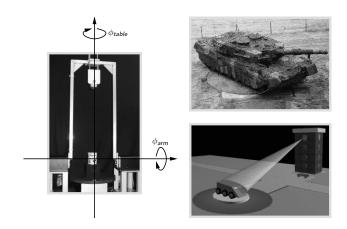


Turntable and Camera Arm

Introduction

Research Overview Object

Recognition

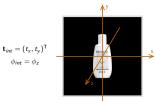

Turntable and Camera Arm

Introduction

Research

Object Recognition

Conclusions



Object poses $(\phi_{\rho},\mathbf{t}_{\rho})$ for all \textit{N}_{ρ} training images $\mathbf{f}_{\rho=1,...,\textit{N}_{\rho}}$ are known.

Object Pose

Research

Object Recognition

$$\mathbf{t} = (t_x, t_y, t_z)^{\mathsf{T}} = (0, 0, 100)^{\mathsf{T}}$$

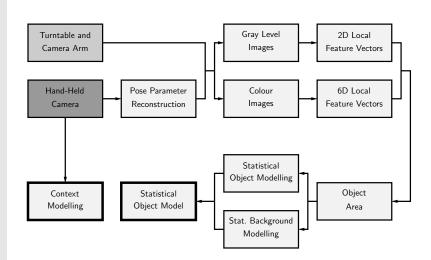
 $\phi = (\phi_x, \phi_y, \phi_z)^{\mathsf{T}} = (0, 0, 0)^{\mathsf{T}}$

 $t = (0, 0, 100)^T$ $\phi = (22.5, 0, 0)^{\mathsf{T}}$

 $t = (50, 25, 100)^T$ $\phi = (0, 0, 0)^T$

 $t = (0, 0, 100)^T$ $\phi = (0, 45, 0)^T$

 $t = (50, 25, 100)^T$ $\phi = (0, 0, -30)^{\mathsf{T}}$


 $t = (0, 0, 80)^T$ $\phi = (0, 0, 0)^T$

Hand-Held Camera

Introduction

Research Overview Object

Object Recognition

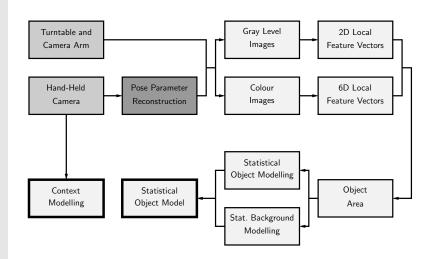
Hand-Held Camera

Introduction

Research

Object Recognition

.ccog...c.o..

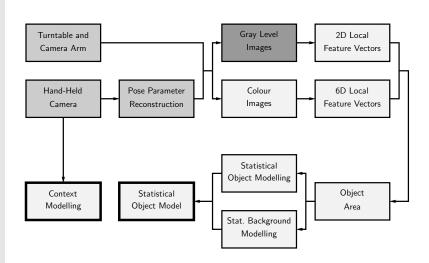

Object poses $(\phi_\rho, \mathbf{t}_\rho)$ for the training images \mathbf{f}_ρ are unknown.

Pose Parameter Reconstruction

Introduction

Research Overview Object

Recognition

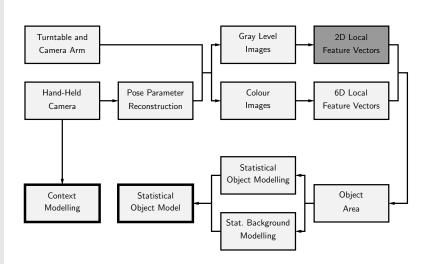


Grey Level Images

Introduction

Research Overview Object

Recognition

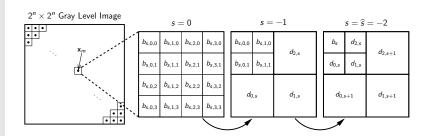


2D Local Feature Vectors

Introduction

Research Overview Object

Recognition

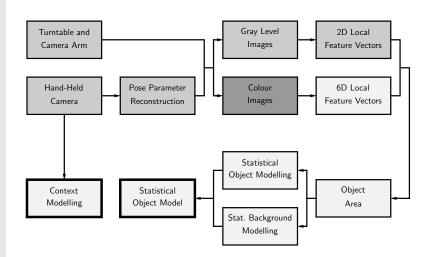


2D Feature Extraction with Wavelet Transform

Introduction

Research Overview

Object Recognition

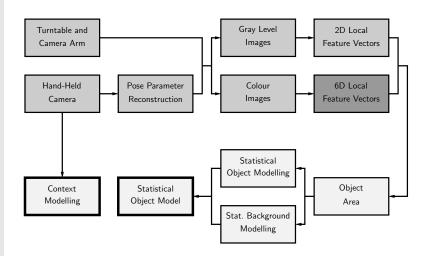

$$\mathbf{c}_{m} = \mathbf{c}(\mathbf{x}_{m}) = \begin{pmatrix} c_{m,1} \\ c_{m,2} \end{pmatrix} = \begin{pmatrix} \ln(2^{s}|b_{s}|) \\ \ln[2^{s}(|d_{0,s}| + |d_{1,s}| + |d_{2,s}|)] \end{pmatrix}$$

Colour Images

Introduction

Research Overview Object

Object Recognition

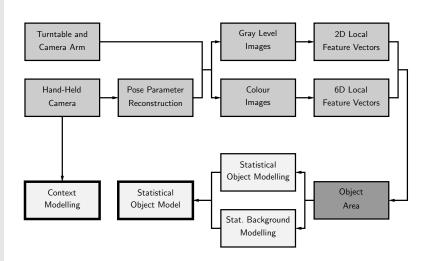


6D Local Feature Vectors

Introduction

Research Overview Object

Object Recognition

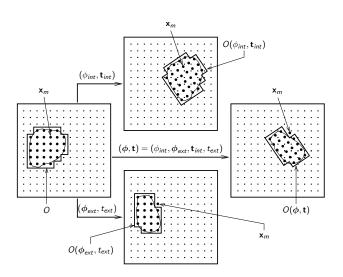


Object Area

Introduction

Research Overview

Object Recognition

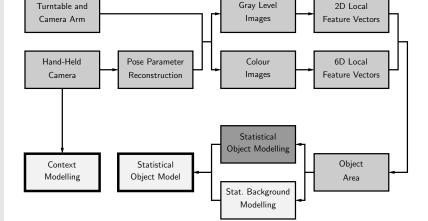


Object Area $O = O(\phi, \mathbf{t})$

Introduction

Research Overview

Object Recognition

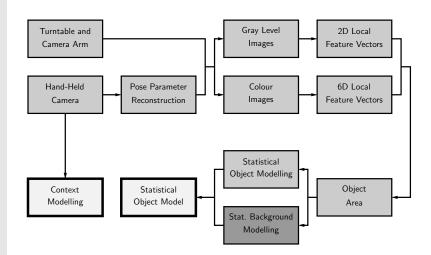


Statistical Object Modelling

Introduction Research

Overview

Recognition

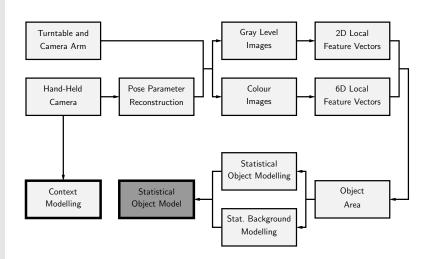


Statistical Background Modelling

Introduction

Research Overview Object

Object Recognition



Statistical Object Model

Introduction

Research Overview Object

Object Recognition

Statistical Object Model - Summary

Introduction

Research Overview

Object Recognition

Conclusions

Overview

$$\Omega_{\kappa} \quad \longrightarrow \quad \mathcal{M}_{\kappa} = \mathcal{M}_{\kappa}(oldsymbol{\phi}, \mathbf{t})$$

$$O_{\kappa}=O_{\kappa}(\phi,\mathbf{t})$$

$$p(\mathbf{c}_m) = p(\mathbf{c}_m | \boldsymbol{\mu}_m, \boldsymbol{\sigma}_m, \boldsymbol{\phi}, \mathbf{t})$$

$$p(\mathbf{c}_m)=p_b$$

Context Modelling

Turntable and

Camera Arm

Introduction

Research Object

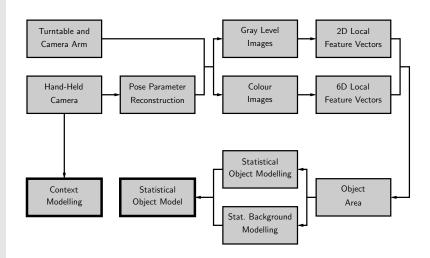
Pose Parameter 6D Local Hand-Held Colour Recognition Reconstruction Images Feature Vectors Camera Statistical Object Modelling Statistical Object Context Modelling Object Model Area Stat. Background

Gray Level

Images

Modelling

2D Local

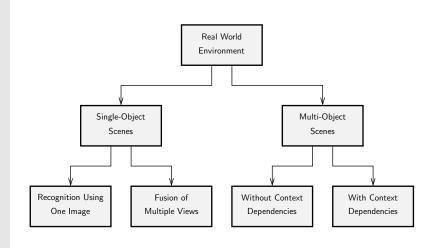

Feature Vectors

Training Phase Completed

Introduction Research

Object

Recognition

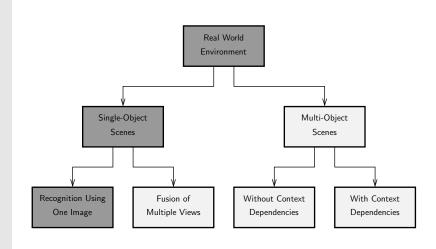


Recognition Phase

Introduction

Research Overview

Object Recognition

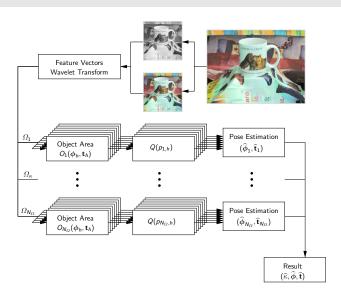


Single-Object, One Image

Introduction

Research Overview

Object Recognition

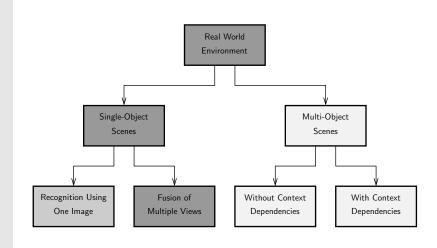


Classification and Localisation Algorithm

Introductio

Research Overview

Object Recognition

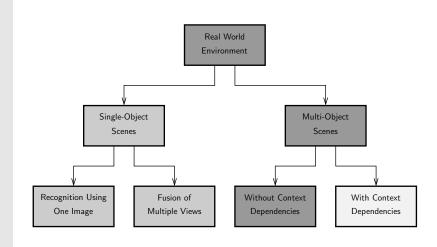


Single-Object, Multiple Views

Introduction

Research Overview

Object Recognition

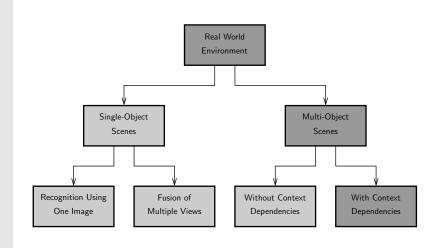


Multi-Object Scenes without Context

Introduction

Research Overview

Object Recognition

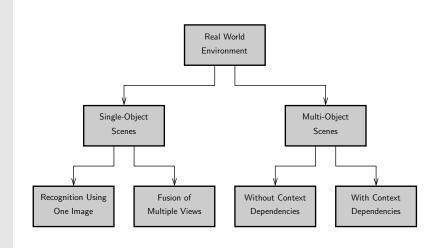


Multi-Object Scenes with Context

Introduction

Research Overview

Object Recognition

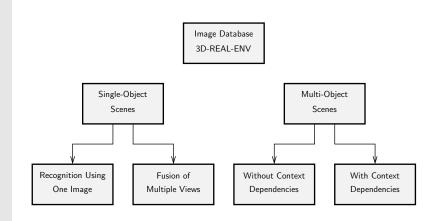


Recognition Phase Completed

Introduction Research

Overview

Object Recognition



Experiments and Results

troduction

Research Overview

Object Recognition

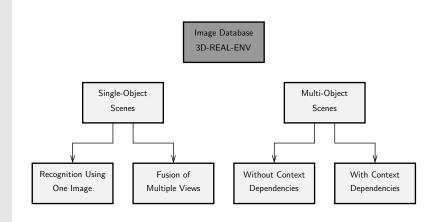


Image Database 3D-REAL-ENV

roduction

Research Overview

Object Recognition

Training Images

roduction

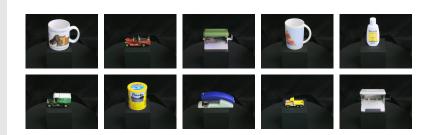
Research Overview

Object Recognition

1680 Training Viewpoints, 33600 Images

$$\phi_{x,\rho} = (0.0^{\circ}, 4.5^{\circ}, 9.0^{\circ}, \dots, 85.5^{\circ}, 90.0^{\circ})$$

$$\phi_{\nu,\rho} = (0.0^{\circ}, 4.5^{\circ}, 9.0^{\circ}, \dots, 351.0^{\circ}, 355.5^{\circ})$$


Test Images HomBack

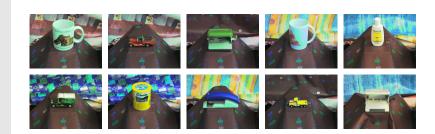
Introduction

Research

Object

Recognition

288 Test Viewpoints, 2880 Images


$$\phi_{x,\tau} = (0.00^{\circ}, 11.25^{\circ}, 22.50^{\circ}, \dots, 78.75^{\circ}, 90.00^{\circ})$$

$$\phi_{\nu,\tau} = (0.00^{\circ}, 11.25^{\circ}, 22.50^{\circ}, \dots, 337.50^{\circ}, 348.25^{\circ})$$

Test Images LessHetBack

Introduction Research

Object Recognition

288 Test Viewpoints, 2880 Images

$$\phi_{x,\tau} = (0.00^{\circ}, 11.25^{\circ}, 22.50^{\circ}, \dots, 78.75^{\circ}, 90.00^{\circ})$$

$$\phi_{V,\tau} = (0.00^{\circ}, 11.25^{\circ}, 22.50^{\circ}, \dots, 337.50^{\circ}, 348.25^{\circ})$$

Test Images MoreHetBack

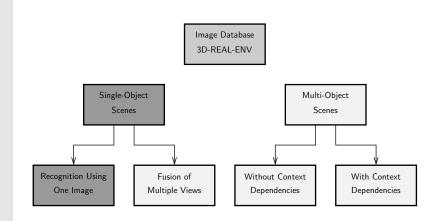
Introduction

Research Overview

Object Recognition Conclusions

288 Test Viewpoints, 2880 Images

$$\phi_{x,\tau} = (0.00^{\circ}, 11.25^{\circ}, 22.50^{\circ}, \dots, 78.75^{\circ}, 90.00^{\circ})$$


$$\phi_{\nu,\tau} = (0.00^{\circ}, 11.25^{\circ}, 22.50^{\circ}, \dots, 337.50^{\circ}, 348.75^{\circ})$$

Single-Object, One Image

roduction

Research Overview

Object Recognition

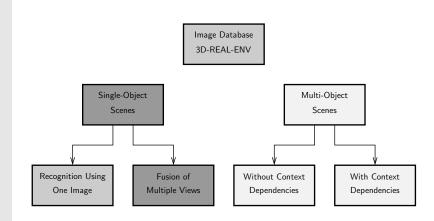
Classification and Localisation Rates

Introduction

Research Overview

Object Recognition Conclusions

Distance of Training Views 4.5°	Classification			Localisation		
	Hom. Back.	Less Het. Back.	More Het. Back.	Hom. Back.	Less Het. Back.	More Het. Back.
Gray Level	100%	92.2%	54.1%	99.1%	80.9%	69.0%
Colour	100%	88.0%	82.3%	98.5%	77.8%	73.6%

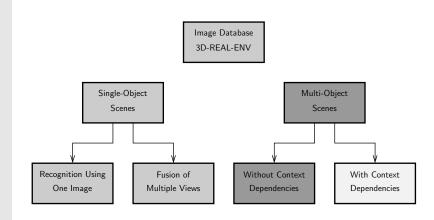


Single-Object, Multiple Views

oduction

Research Overview

Object Recognition

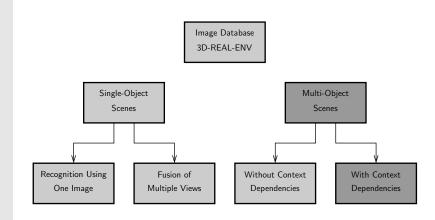


Multi-Object, Without Context

Introduction

Research Overview

Object Recognition

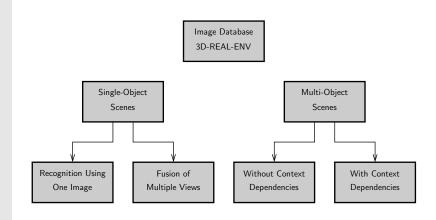


Multi-Object, With Context

troduction

Research Overview

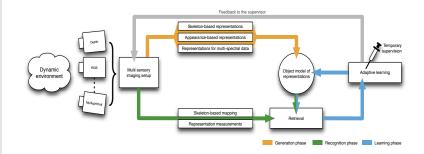
Object Recognition



Evaluation Completed

Introduction

Research Overview


Object Recognition

Adaptive Learning for Object Recognition

Research

Object Recognition

Overview

Introduction

Research

Object Recognition

Conclusions

1 Introduction

3 Object Recognition

Adaptivity and Background Knowledge

Object Recognition

Introduction

Recognition

Conclusions

Research

Start: A System for Appearance-Based Statistical Object Recognition

Including Colour and Context Modelling

Vision: Adaptive Learning of Context for Object Recognition

Multimedia Retrieval

Start: Multimedia Content Management and Retrieval System

Vision: Adaptive Learning of User Preferences based on Relevance Feed-

back

Image Understanding

Start: Spacial Reasoning for Image Classification

Vision: Integration of High-Level Background Knowledge from Ontolo-

gies into Low-Level Image Processing

Existing Collaborations

Introduction

Recognition

Conclusions

Object Recognition

- Prof. Kropatsch, Vienna University of Technology
- Prof. Latecki, Temple University of Philadelphia
- Prof. Paulus, University of Koblenz-Landau
- Prof. Pizlo, Purdue University, West Lafavette

Multimedia Retrieval

- Prof. Izquierdo, Queen Mary University of London
- Prof. Rüger, Open University
- Prof. Uehara, Kobe University

Image Understanding

- Prof. Haas. Joanneum Research in Graz
- Prof. Staab, University of Koblenz-Landau

New Research Field - Biometry

Introduction

Object

Recognition

Driver Condition Monitoring with Smartphones

- Assessment of Smartphone Sensors for Driver Condition Monitoring
- Driver Profile Learning from Multimodal Smartphone Sensory Data
- Runtime Automatic Driver Condition Recognition
- New Promising Collaboration with Prof. Krajewski, University of Wuppertal

Human Identification using Palm-Vein Images

- Robust Sensory Setup for Acquisition
- Graph-Based Matching for Similarity Measure