Advanced Image Processing and Image Segmentation Techniques – Segmentation

Joanna Czajkowska, PhD Media Systems Group Institute for Vision and Graphics, University of Siegen Fuzzy Connectedness Analysis

- I. Introduction:
 - Fuzzy relation
 - Puzzy digital space and paths
 - Fuzzy adjacency and affinity
 - Fuzzy connectedness
- II. Fuzzy connectedness-based image segmentation:
 - Fuzzy objects
 - Starting points
 - § Fuzzy connectedness scene
 - Multi-objects fuzzy connectedness

III. Implementation:

- Graph searching using dynamic programming
- Graph searching using Dijkstra algorithm
- Matrix transformation-based graph analysis

- The fuzzy connectedness (FC) theory is a branch of science using fuzzy logic, sets and relations.
- Authors: Jayaram Udupa and Supun Samarasekeraw (1996),
 Azriel Rosenfeld (1979) Digital topology

Azriel Rosenfeld

Jayaram Udupa

Articles:

- A. Rosenfeld, Digital Topology, American Mathematical Monthly, (86):621–630, 1979.
- A. Rosenfeld, Fuzzy Digital Topology, Information and Control, 40(1): 76–87, 1979.
- J. Udupa, S. Samarasekera, Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation, Graphical Models and Image Processing, 58(3): 246–261, 1996.
- P. Saha, J. Udupa, D. Odhner, Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation, Computer Vision and Image Understanding, 77(9): 145–174, 2000.
- J. Udupa, P. Saha, Fuzzy Connectedness and Image Segmentation, Proceedings of the IEEE, 91: 1649–1669, 2003.

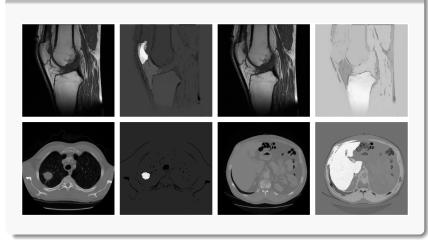
Motivation

- heterogeneity of intensity analysis
- heterogeneous object segmentation
- the analysis of ordered and connected data
- natural grouping of voxels

Applications

• image processing - image segmentation

Motivation - to segment the objects / create the fuzzy connectedness scene

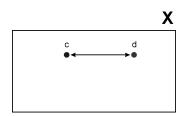


Methodology

- operating on multidimensional and multifeature sets of ordered data
- points classified into single objects are strongly connected to each other by some more or less abstract relations
- their relations to points constituting other objects have relatively lower values

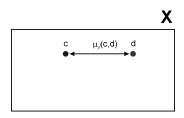
Fuzzy connectedness = some fuzzy relation

$$\rho = \{(c, d), \mu_{\rho}(c, d), \quad c, d \in \mathbb{X} \times \mathbb{X}\}$$



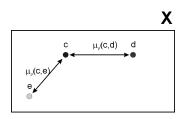
Fuzzy connectedness = some fuzzy relation

$$\rho = \{(c, d), \mu_{\rho}(c, d), \quad c, d \in \mathbb{X} \times \mathbb{X}\}$$



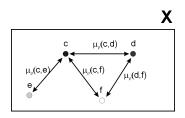
Fuzzy connectedness = some fuzzy relation

$$\rho = \{(c, d), \mu_{\rho}(c, d), \quad c, d \in \mathbb{X} \times \mathbb{X}\}$$



Fuzzy connectedness = some fuzzy relation

$$\rho = \{(c, d), \mu_{\rho}(c, d), \quad c, d \in \mathbb{X} \times \mathbb{X}\}$$



If X is *n*-dimensional image of field X^n , then \mathbf{c} , \mathbf{d} are points (pixels, voxels), being vectors of *n* coordinates:

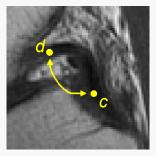
$$\rho = \{(\mathbf{c}, \mathbf{d}), \mu_{\rho}(\mathbf{c}, \mathbf{d}), \quad \mathbf{c}, \mathbf{d} \in \mathbb{X}^n \times \mathbb{X}^n\}$$

If X is *n*-dimensional image of field X^n , then \mathbf{c} , \mathbf{d} are points (pixels, voxels), being vectors of *n* coordinates:

$$\rho = \{(\mathbf{c}, \mathbf{d}), \mu_{\rho}(\mathbf{c}, \mathbf{d}), \quad \mathbf{c}, \mathbf{d} \in \mathbb{X}^n \times \mathbb{X}^n\}$$

If X is *n*-dimensional image of field X^n , then \mathbf{c} , \mathbf{d} are points (pixels, voxels), being vectors of *n* coordinates:

$$\rho = \{(\mathbf{c}, \mathbf{d}), \mu_{\rho}(\mathbf{c}, \mathbf{d}), \quad \mathbf{c}, \mathbf{d} \in \mathbb{X}^n \times \mathbb{X}^n\}$$



Properties of fuzzy relations (this corresponds to the equivalence relation in hard sets) – similitude relation

• Reflexivity:

$$\forall (c,c) \in \mathbb{X} \times \mathbb{X}: \qquad \mu_{\rho}(c,c) = 1.$$

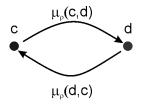
Note:

Each element is connected with itself with maximal value of $\mu_{
ho}$

Properties of fuzzy relations

• Symmetry:

$$\forall (c,d) \in \mathbb{X} \times \mathbb{X} : \qquad \mu_{\rho}(c,d) = \mu_{\rho}(d,c).$$



Note:

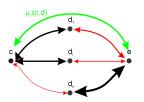
Each two elements are connected with the same relation in both sides

Properties of fuzzy relations

Transitivity:

$$\forall (c,d), (d,e), (c,e) \in \mathbb{X} \times \mathbb{X} :$$

$$\mu_{\rho}(c,e) = \max_{d} \left\{ \min \left\{ \mu_{\rho}(c,d), \mu_{\rho}(d,e) \right\} \right\}.$$



Note:

The relation of two elements may consist of their relations with third element, according to above rule

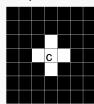
Crisp adjacency

An image - a **topological ordered set**: the spacial relations between its elements (points) are defined.

Crisp adjacency relations α are e.g. 4-, 8-adjacency for 2D images or 6-, 18- and 26-adjacency for 3D image series. Exemplary 4-adjacency:

$$\forall \mathbf{c} = (c_x, c_y), \, \mathbf{d} = (d_x, d_y) \in \mathbb{X}^2 \times \mathbb{X}^2 :$$

$$\mu_{\alpha}(\mathbf{c}, \mathbf{d}) = \begin{cases} 1 & \Leftrightarrow & \sum_{i=x,y} (|c_i - d_i|) \leq 1, \\ 0 & \text{otherwise.} \end{cases}$$

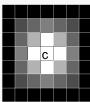


Fuzzy adjacency relation

Fuzzy spel adjacency is a reflexive and symmetric fuzzy relation $\mu_{\alpha} \in \langle 0, 1 \rangle$ in \mathbb{X}^2 and assigns a value to a pair of spels (c, d) based on how close they are spatially, eg.:

$$\forall \mathbf{c} = (c_x, c_y), \mathbf{d} = (d_x, d_y) \in \mathbb{X}^2 \times \mathbb{X}^2 :$$

$$\mu_{\alpha}(\mathbf{c}, \mathbf{d}) = \begin{cases} \frac{1}{||c - d||} & \Leftrightarrow & ||c - d|| < 3, \\ 0 & \text{otherwise.} \end{cases}$$



Fuzzy affinity κ - the primary fuzzy relation in FC theory

Fuzzy affinity membership function $\mu_{\kappa} \in [0,1]$ takes non-zero values for adjacent (fuzzy adjacent) elements only.

It assigns a value to a pair of spels (c, d) based on how close they are spatially and intensity-based-property-wise (local hanging-togetherness).

The value of μ_{κ} is based on the c and d features, like **coordinate** adjacency, image intensities I(c), I(d) or local intensity gradients.

Fuzzy spel affinity

The most popular formula using in image processing:

$$\mu_{\kappa}(\mathbf{c}, \mathbf{d}) = \mu_{\alpha}(\mathbf{c}, \mathbf{d}) \cdot g(\mu_{\phi}(\mathbf{c}, \mathbf{d}), \mu_{\psi}(\mathbf{c}, \mathbf{d})),$$

where:

- μ_{ϕ} intensity component, describing expected mean intensity of connected points,
- μ_{ψ} gradient component, describing expected difference of intensities of connected points.

Fuzzy spel affinity

The most popular formula using in image processing:

$$\mu_{\kappa}(\mathbf{c}, \mathbf{d}) = \mu_{\alpha}(\mathbf{c}, \mathbf{d}) \cdot g(\mu_{\phi}(\mathbf{c}, \mathbf{d}), \mu_{\psi}(\mathbf{c}, \mathbf{d})),$$

Expected properties of g:

- range within [0,1]
- monotonically non-decreasing in both arguments

Examples:

$$\mu_{\kappa}(\mathbf{c}, \mathbf{d}) = \frac{1}{2} \mu_{\alpha}(\mathbf{c}, \mathbf{d}) \left(\mu_{\phi}(\mathbf{c}, \mathbf{d}) + \mu_{\psi}(\mathbf{c}, \mathbf{d}) \right)$$

$$\mu_{\kappa}(\mathbf{c}, \mathbf{d}) = \mu_{\alpha}(\mathbf{c}, \mathbf{d}) \sqrt{(\mu_{\phi}(\mathbf{c}, \mathbf{d}) + \mu_{\psi}(\mathbf{c}, \mathbf{d}))}$$

Fuzzy spel affinity:

$$\kappa = \{ ((\underline{e}, \underline{d}), \mu_{\kappa}(\underline{e}, \underline{d})) : (\underline{e}, \underline{d}) \in C \times C \},$$

$$\mu_{\kappa}(\underline{e}, \underline{d}) = \mu_{\alpha} \cdot (w_1 H_1(\underline{e}, \underline{d}) + w_2 H_2(\underline{e}, \underline{d})),$$

with parameters w_1 and w_2 denoting such positive constants that

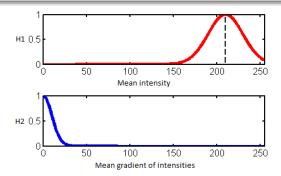
$$w_1 + w_2 = 1$$
.

Components H_1 and H_2 are defined as:

$$\begin{split} & \textit{H}_{1}(\underline{e},\underline{d}) = \exp\left(-\frac{1}{2\sigma_{1}^{2}}\left(\frac{\textit{I}(\underline{e}) + \textit{I}(\underline{d})}{2} - \lambda_{1}\right)^{2}\right), \\ & \textit{H}_{2}(\underline{e},\underline{d}) = \exp\left(-\frac{1}{2\sigma_{2}^{2}}\left(|\textit{I}(\underline{e}) - \textit{I}(\underline{d})| - \lambda_{2}\right)^{2}\right). \end{split}$$

Fuzzy spel affinity

$$\mu_{\kappa}(\mathbf{c}, \mathbf{d}) = \mu_{\alpha}(\mathbf{c}, \mathbf{d}) \left(w_1 e^{\frac{\left(\frac{I(\mathbf{c}) + I(\mathbf{d})}{2} - \lambda_1\right)^2}{2\sigma_1^2}} + w_2 e^{\frac{\left(|I(\mathbf{c}) - I(\mathbf{d})| - \lambda_2\right)^2}{2\sigma_2^2}} \right) :$$



Path

A single pair of points $\langle \mathbf{e}_i, \mathbf{e}_j \rangle$ with non-zero affinity is called **link** and the value of $\mu_{\kappa}(\mathbf{e}_i, \mathbf{e}_j)$ – its strength.

Path

A path is any sequence of $m \geq 2$ spels $\langle \mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_m \rangle$ such that for any $i \in [1, m-1]$ a pair $\langle \mathbf{e}_i, \mathbf{e}_{i+1} \rangle$ is a link. It is noted p_{cd} if $\mathbf{c} = \mathbf{e}_1$ and $\mathbf{d} = \mathbf{e}_m$.

Let P_{cd} denotes the set of all possible paths p_{cd} from **c** to **d**.

Then the set of all possible paths in \mathbb{X}^2 is

$$P = \bigcup_{\mathbf{c}.\mathbf{d} \in \mathbb{X}^2} P_{cd}$$

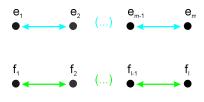
Strength of path

Fuzzy membership function $\mu_{\mathcal{N}}(p_{cd})$ describing any path $p_{cd} \in P_{cd}$ is said to be its **strength** and is the smallest spel affinity along p_{cd}

$$\mu_{\mathcal{N}}(p_{cd}) = \begin{cases} \min_{i=1..m-1} \{\mu_{\kappa}(\mathbf{e}_i, \mathbf{e}_{i+1})\} & \Leftrightarrow & p_{cd} = \langle \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m \rangle \\ 0 & \Leftrightarrow & p_{cd} = \langle \rangle. \end{cases}$$

Path - join to path operation

A binary join to operation denoted "+" is defined as follows

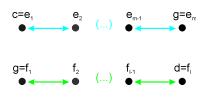


$$\langle \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m \rangle,$$

 $\langle \mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_l \rangle.$

Path - join to path operation

A binary join to operation denoted "+" is defined as follows



$$p_{cg} = \langle \mathbf{c}, \mathbf{e}_2, \dots, \mathbf{g} \rangle,$$

$$p_{gd} = \langle \mathbf{g}, \mathbf{f}_2, \dots, \mathbf{d} \rangle.$$

Path - join to path operation

A binary join to operation denoted "+" is defined as follows

$$p_{cg} + p_{gd} = \langle \mathbf{c}, \mathbf{e}_2, \dots, \mathbf{g}, \mathbf{f}_2, \dots, \mathbf{d} \rangle.$$

Path - join to path operation

For empty paths:

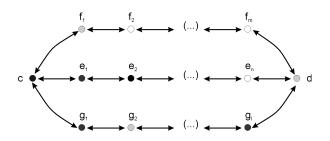
$$p_{cd} + \langle \rangle = p_{cd},$$

$$\langle \rangle + p_{cd} = p_{cd},$$

$$\langle \rangle + \langle \rangle = \langle \rangle$$
.

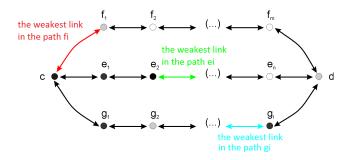
Fuzzy connectedness

There exist many different paths p_{cd} constituting a set P_{cd} .



Fuzzy connectedness

Each path p_{cd} has a defined strength $\mu_{\mathcal{N}}$.

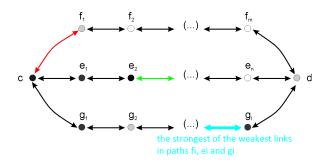


$$\mu_{\mathcal{N}}(p_{cd}) = \begin{cases} \min_{i=1..m-1} \{\mu_{\kappa}(\mathbf{e}_i, \mathbf{e}_{i+1})\} & \Leftrightarrow & p_{cd} = \langle \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m \rangle \\ 0 & \Leftrightarrow & p_{cd} = \langle \rangle. \end{cases}$$

Fuzzy connectedness

Any image spels ${\bf c}$ and ${\bf d}$ are fuzzy connected according to relation ${\it K}$.

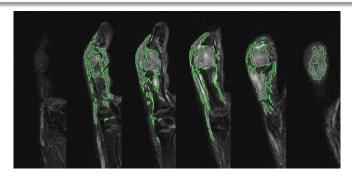
The membership function of fuzzy connectedness $\mu_K(\mathbf{c}, \mathbf{d})$ is the strength of the strongest path p_{cd} of all the paths between \mathbf{c} and \mathbf{d} , forming a set P_{cd} (global hanging-togetherness):



Fuzzy connectedness vs image segmentation

If the set $\mathbb X$ is an image, then the information concerning fuzzy relation between its points (pixels) makes it possible to group them into semantically interpretable regions - **to segment them**.

The theorems were given in (Udupa&Samarasekera, 1996).



Fuzzy connected object

Fuzzy $\kappa \theta_{\mathsf{x}}$ object $-\mathcal{O}_{\theta_{\mathsf{x}}}(\mathbf{o})$ containing a seed spel \mathbf{o} is a fuzzy subset of \mathbb{X} whose membership function is:

$$\mu_{\mathcal{O}_{\theta_x}(\mathbf{o})}(\mathbf{c}) = \left\{ egin{array}{ll} \eta(\mathbf{c}) &\Leftrightarrow & c \in \mathcal{O}_{\theta_x}(\mathbf{o}) \\ 0 & otherwise \end{array}
ight.$$

where η assigns an objectness value to each spel perhaps based on $f(\mathbf{c})$ and $\mu_{\kappa}(\mathbf{o}, \mathbf{c})$.

Fuzzy digital space

$$(\mathbb{X}^n, \alpha)$$

Scene (over a fuzzy digital space)

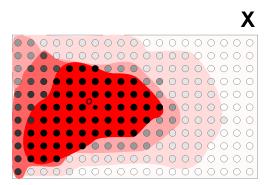
$$C_o = (C, f), \quad C \subset \mathbb{X}^n, f : C \to [0, 1]$$

Fuzzy connected object

Fuzzy $\kappa\theta_x$ object $\mathcal{O}_{\theta_x(\mathbf{o})}$ consists then of all the elements, including \mathbf{o} , connected with each other with the value greater x, where $x\in[0,1]$, towards the defined fuzzy affinity relation κ

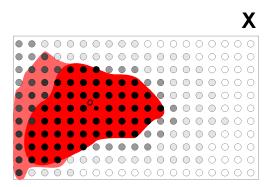
$$\mathcal{O}_{\theta_x(\mathbf{o})}(\mathbf{c}) = \left\{ egin{array}{ll} 1 & \Leftrightarrow & c \in C_o \geq x \\ 0 & & otherwise \end{array} \right.$$

Fuzzy connected object



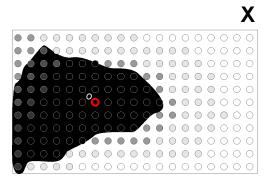
Fuzzy $\kappa\theta_{x}$ object $\mathcal{O}_{\theta_{x}(\mathbf{o})}$ consists then of all the elements, including \mathbf{o} , connected with each other with the value greater x, where $x \in [0,1]$, towards the defined fuzzy affinity relation κ .

Fuzzy connected object



Fuzzy $\kappa\theta_{x}$ object $\mathcal{O}_{\theta_{x}(\mathbf{o})}$ consists then of all the elements, including \mathbf{o} , connected with each other with the value greater x, where $x \in [0,1]$, towards the defined fuzzy affinity relation κ .

Fuzzy connected object \rightarrow binary object



Defuzzyfication of fuzzy connected object $\mathcal{O}_{\theta_x(\mathbf{o})}$ results in binary object $\mathcal{O}_{\theta_x}(\mathbf{o})$, as a set of points in $\mathcal{O}_{\theta_x}(\mathbf{o})$.

Seed points

According to the already given definition, to obtain the fuzzy connected object is necessary to calculate fuzzy connectedness of all the pair of elements in \mathbb{X} .

Seed points selection procedure is then needed.

In different applications a multiseeded approach is used, where set O of M(M > 1) points \mathbf{o}_i is required.

Fuzzy connectivity scene

In the segmentation procedure the **fuzzy connectivity scene** C_o is created by assigning a strength of connectedness to each possible path between some predefined seed point \mathbf{o} and any other image element:

$$C_o(\mathbf{c}) = \mu_K(\mathbf{o}, \mathbf{c}).$$

If there exists the set O of M(M > 1) points \mathbf{o}_i , then $C_o(\mathbf{c})$ is equal to the strongest of connectedness with points in O:

$$C_o(\mathbf{c}) = \max_i \left\{ \mu_K(\mathbf{o}_i, \mathbf{c}) \right\}.$$

The scene C_o for a set O is a fuzzy union:

$$C_o(\mathbf{c}) = \bigcup_{\mathbf{o}_i \in O} C_{\mathbf{o}_i} = \max_i \left\{ \mu_K(\mathbf{o}_i, \mathbf{c}) \right\}.$$

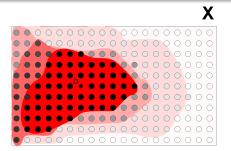
Fuzzy connectivity scene

According to the reflexivity properties, for the point \mathbf{o} :

$$C_o(\mathbf{o}) = \mu_K(\mathbf{o}, \mathbf{o}) = 1.$$

The far from the starting point a , the smaller the fuzzy connectedness value is.

^ain the meaning of connectedness



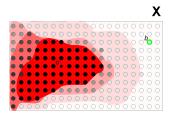
Relative fuzzy connectedness

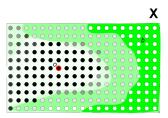
The relative fuzzy connectedness (RFC) variant uses the second object, treated as a background region with its own seed point \mathbf{b} , to determine $O_{\kappa_{\mathbf{v}}(\mathbf{b})}$ in a rivalry mode.

Spel $\mathbf{c} \in C$ belongs to an object according to affinity κ and connectedness K if $\mu_K(\mathbf{o},\mathbf{c}) > \mu_K(\mathbf{b},\mathbf{c})$. It leads to fuzzy connectivity scenes C_o and C_b and their comparison in a form of a "division of spoils".

Relative fuzzy connectedness

After creating scenes C_o and C_b each point **c** is assigned to the region (eg. object and background), with which starting point is connected stronger.





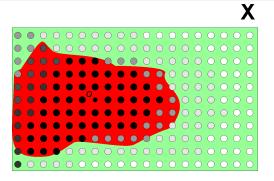
$$\mathbf{c} \in P_{ob_{\kappa}}$$

$$\Leftrightarrow$$

$$\mathbf{c} \in P_{ob_{\kappa}} \quad \Leftrightarrow \quad C_o(\mathbf{c}) > C_b(\mathbf{c}).$$

Relative fuzzy connectedness

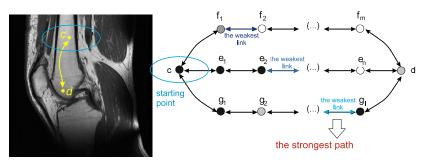
After creating scenes C_o and C_b each point \mathbf{c} is assigned to the region (eg. object and background), with which starting point is connected stronger.



$$\mathbf{c} \in P_{ob_{\kappa}} \quad \Leftrightarrow \quad C_o(\mathbf{c}) > C_b(\mathbf{c}).$$

3-D Relative Fuzzy Connectedness Analysis

3-D relative fuzzy connectedness analysis:



- Find the set of objects and background starting points respectively
- ② Chose the fuzzy spel affinity κ and fuzzy adjacency ρ

Fuzzy connectivity scene creation - implementation

Fuzzy connectivity scene C_o creation - graph searching:

- dynamic programming approach (Udupa and Samarasekera, 1996)
- Dijkstra algorithm (Carvalho et al., 1999)
- matrix transformation-based approach (Kawa, 2007)

Implementation - dynamic programming

- The DP algorithm uses queue Q, into/from which successive image points are inserted or removed.
- In a single iteration t one point (d) from the front of queue is taken. All its neighboring pixels (voxels) are tested.
- It is checked, if there exists a path p_{cd} , connecting points **c** and **d** with stronger path, then previously estimated $C_o(\mathbf{d})$.
- If yes, $C_o(\mathbf{d})$ is updated, and all the neighbors of \mathbf{d} are put into queue Q.

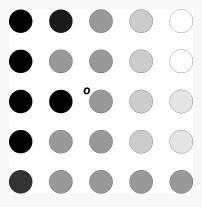
Implementation - dynamic programming

Features:

- A single iteration t takes short time.
- A lot of iterations is required.
- One point can be analyzed several times.

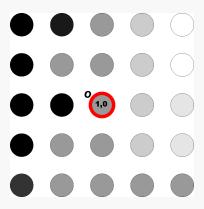
```
Implementation - dynamic programming
=== Algorithm 1. Dynamic Programming ===
     Initialize scene C_o with zeros;
     Set C_o(\mathbf{o}_i) = 1 for all the starting points \mathbf{o}_i;
     Put into the queue Q all \mathbf{c}: \mu_{\kappa}(\mathbf{o}_{i},\mathbf{c}) > 0;
     Until Q is not empty
     Take and remove \mathbf{c} from the front of queue Q;
         f_{max} = \max_{\mathbf{d}} \left[ \min \left\{ C_o(\mathbf{d}), \mu_{\kappa}(\mathbf{c}, \mathbf{d}) \right\} \right];
6:
7: If f_{max} > C_0(\mathbf{c})
8: C_{o}(\mathbf{c}) = f_{max};
9: Then put to Q all \mathbf{e}: \mu_{\kappa}(\mathbf{c}, \mathbf{e}) > 0;
10:
         end
11:
     end
```

Dynamic programming



1: Initialize scene C_o with zeros;

Dynamic programming

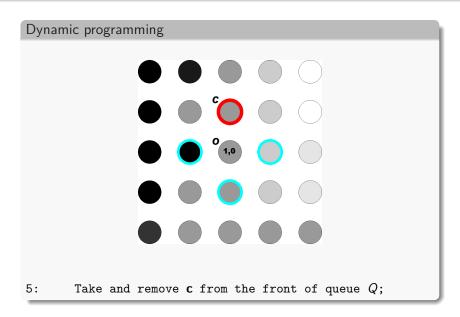


2: Set $C_o(\mathbf{o}_i) = 1$ for all starting points \mathbf{o}_i ;

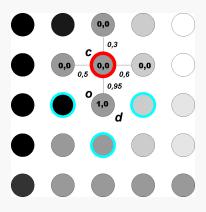
Dynamic programming



3: Put to the queue Q all \mathbf{c} : $\mu_{\kappa}(\mathbf{o}_{i},\mathbf{c})>0$;

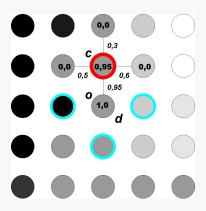


Dynamic programming



6: $f_{max} = \max_{\mathbf{d}} [\min \{ C_o(\mathbf{d}), \mu_{\kappa}(\mathbf{c}, \mathbf{d}) \}];$

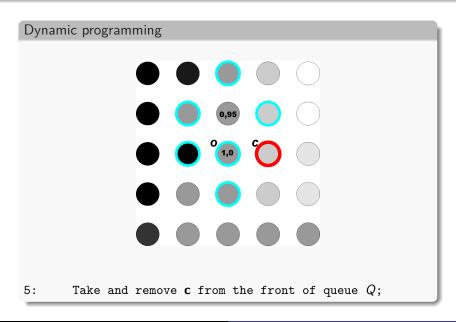
Dynamic programming



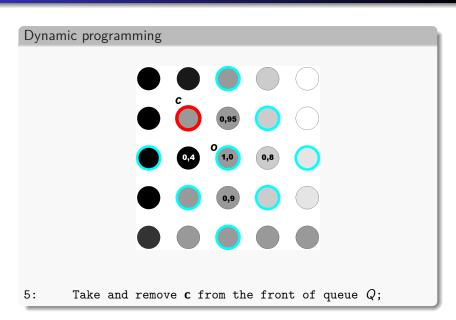
- 7: If $f_{max} > C_o(\mathbf{c})$
- 8: $C_o(\mathbf{c}) = f_{max}$;

Dynamic programming

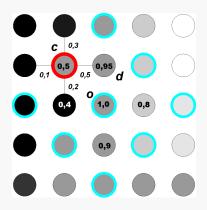
9: Put to Q all $\mathbf{e}: \mu_{\kappa}(\mathbf{c}, \mathbf{e}) > 0$;



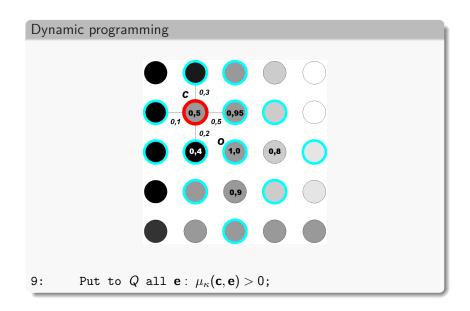
Dynamic programming After a while...



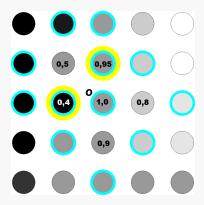
Dynamic programming



- 6: $f_{max} = \max_{\mathbf{d}} [\min \{C_o(\mathbf{d}), \mu_{\kappa}(\mathbf{c}, \mathbf{d})\}];$
- 7: If $f_{max} > C_o(\mathbf{c})$
- 8: $C_o(\mathbf{c}) = f_{max};$



Dynamic programming



The selected points are put into the queue once again!

Implementation - Dijkstra algorithm

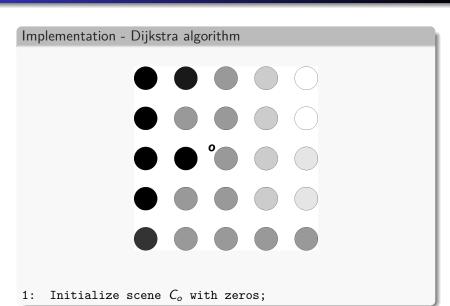
- I a single iteration t the point **is not** from the front of queue Q, but the point with \mathbf{c} with the maximal value $C_o(\mathbf{c})$.
- It is treated as the second last point of the path leading to each of its neighbors **d**.
- If it causes the improvement of $C_o(\mathbf{d})$, then the value $C_o(\mathbf{d})$ is updated and \mathbf{d} is put into the queue.

Implementation - Dijkstra algorithm

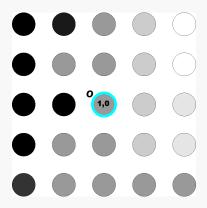
Features:

- A point c taken from the queue is not put there again the number of iterations T does not exceed the number of image points.
- It is necessary to perform time consuming maximum operation.

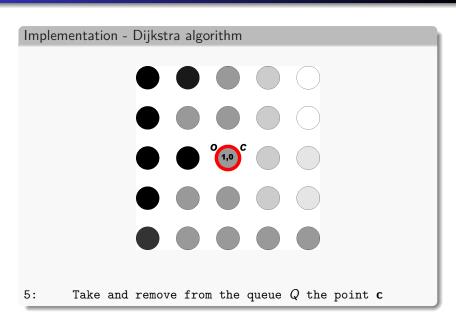
```
Implementation - Dijkstra algorithm
=== Algorythm 2. Dijkstra algorithm =======
1: Initialize scene C_0 with zeros;
2: Set C_o(\mathbf{o}_i) = 1 for all the starting points \mathbf{o}_i;
3: Put into the queue Q all \mathbf{o}_i;
4: Until Q is not empty
5:
         Take and remove from the queue Q the point c
                                                with maximum C_o(\mathbf{c});
6: For all \mathbf{d}: \mu_{\kappa}(\mathbf{c},\mathbf{d}) > 0
7:
           \nu = \min \{ C_o(\mathbf{c}), \mu_{\kappa}(\mathbf{c}, \mathbf{d}) \};
8:
           If \nu > C_o(\mathbf{d})
9:
              C_o(\mathbf{d}) = \nu;
10:
              Put d into Q;
11:
           end
12:
        end
13:
    end
```



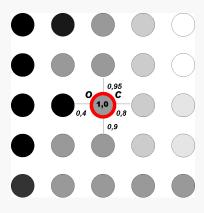
Implementation - Dijkstra algorithm



- 2: Set $C_o(\mathbf{o}_i) = 1$ for all starting points \mathbf{o}_i ;
- 3: Put into the queue Q all \mathbf{o}_i ;

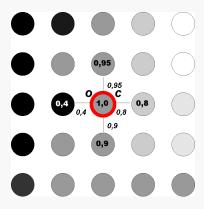


Implementation - Dijkstra algorithm

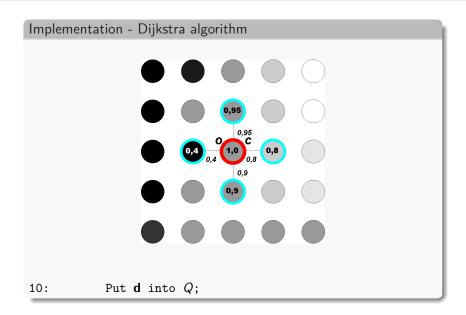


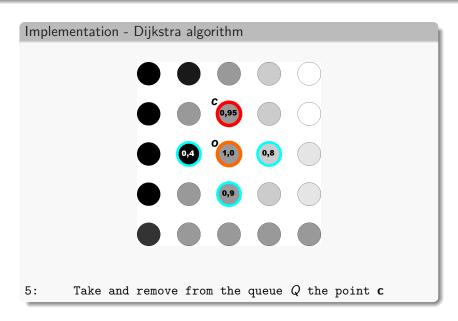
```
6: For all \mathbf{d}: \mu_{\kappa}(\mathbf{c}, \mathbf{d}) > 0
7: \nu = \min \{ C_o(\mathbf{c}), \mu_{\kappa}(\mathbf{c}, \mathbf{d}) \};
```

Implementation - Dijkstra algorithm

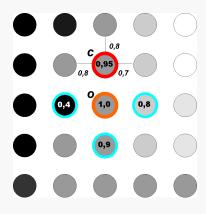


- 8: If $\nu > C_o(\mathbf{d})$
- 9: $C_o(\mathbf{d}) = \nu$;





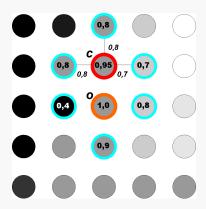
Implementation - Dijkstra algorithm



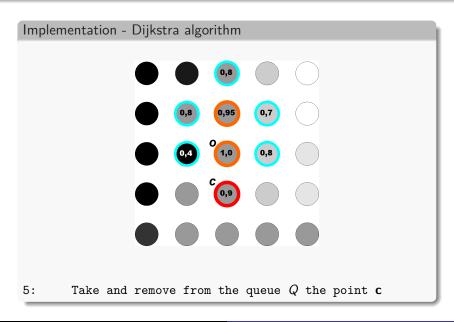
6: For all
$$\mathbf{d}$$
: $\mu_{\kappa}(\mathbf{c}, \mathbf{d}) > 0$

7: $\nu = \min \{ C_o(\mathbf{c}), \mu_{\kappa}(\mathbf{c}, \mathbf{d}) \};$

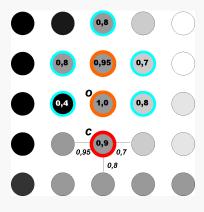
Implementation - Dijkstra algorithm



- 8: If $\nu > C_o(\mathbf{d})$ 9: $C_o(\mathbf{d}) = \nu$;
- 10: Put \mathbf{d} into Q;

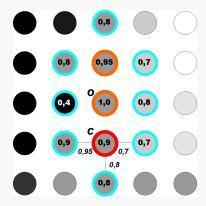


Implementation - Dijkstra algorithm

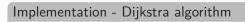


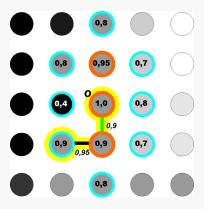
```
6: For all \mathbf{d}: \mu_{\kappa}(\mathbf{c}, \mathbf{d}) > 0
7: \nu = \min \{C_o(\mathbf{c}), \mu_{\kappa}(\mathbf{c}, \mathbf{d})\};
```

Implementation - Dijkstra algorithm



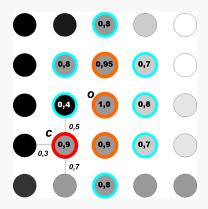
- 8: If $\nu > C_o(\mathbf{d})$ 9: $C_o(\mathbf{d}) = \nu$;
- 10: Put \mathbf{d} into Q;





The path to the selected point and its weakest link.

Implementation - Dijkstra algorithm

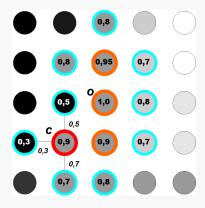


5: Take and remove from the queue Q the point ${\bf c}$

6: For all \mathbf{d} : $\mu_{\kappa}(\mathbf{c},\mathbf{d})>0$

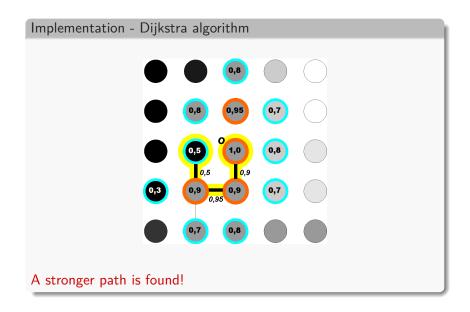
7: $\nu = \min \{ C_o(\mathbf{c}), \mu_{\kappa}(\mathbf{c}, \mathbf{d}) \};$

Implementation - Dijkstra algorithm



```
8: If \nu > C_o(\mathbf{d})
9: C_o(\mathbf{d}) = \nu;
```

10: Put \mathbf{d} into Q;



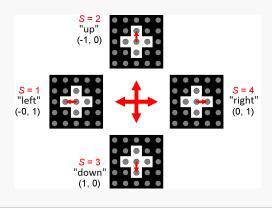
Implementation - Matrix transformation-based algorithm

- The approach uses analogy to shifts resulting from the shape of structural element in mathematical morphology.
- The previously obtained matrix of shifts makes it possible to calculate the "min" and "max" values in more efficient way, to dynamically change the fuzzy connectivity scene.

Implementation - Matrix transformation-based algorithm

Matrices adjacency:

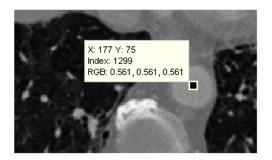
• the exemplary crisp 4-adjacency relation $\alpha_4 = 4$ shifts s_i from the position of central pixel:



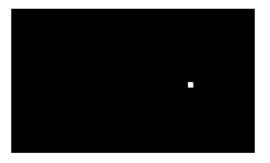
```
Implementation - Matrix transformation-based algorithm
= Algorythm 3. Matrix transformation-based algorithm =
1:
     Chose the hard adjacency relation \alpha;
2:
     Decompose \alpha to the series of shifts s
 denoting neighboring elements;
     Preprocess the original image by padding rows,
 columns and layers as not to permit for wrapping
 the original values in the later steps;
     Precompute the fuzzy affinity values for each
 neighborhood member (one table T_s containing
 the affinity values for each \alpha-connected member;
 e.g. 4 tables if 4-connectivity has been chosen;
 e.g. T_1 for the one to the left);
```

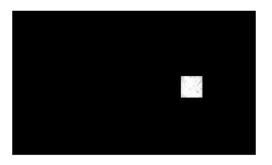
Implementation - Matrix transformation-based algorithm

```
By using circular shift of the precomputed fuzzy
affinity tables ensure, that the element of a new
T_s(\mathbf{c}) denotes the affinity of original spel \mathbf{c} with respect
 to the s-th neighbor; e.g. for a pixel \mathbf{c} = (c_x, c_y),
T_1(c_x,c_y) contains \mu_k(\mathbf{c},\mathbf{d}) with respect to
 the left pixel \mathbf{d} = (c_{x-1}, c_v);
     Initialize scene C_0 with values zeros;
6:
7: Set C_o(\mathbf{o}_i) = 1 for all the starting points \mathbf{o}_i;
7: Repeat
8:
        For each shift s
          T = \min(C_0, T_s);
9:
                                        % matrix operation
10:
           C_o = \max(C_o, T);
                                          % matrix operation
11:
        end
12:
     until C_o does not change
```

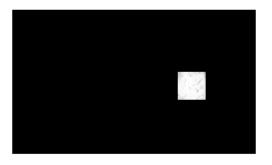


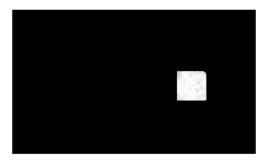


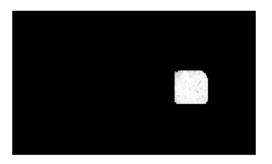


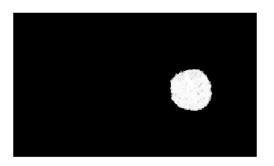












To sum up....

- Free to choose starting points
- Possibility to choose different features
- Free to select the threshold
- Simultaneous segmentation of different objects

Active Contour Model