Pattern Recognition Lecture "Template Matching"

Prof. Dr. Marcin Grzegorzek

Research Group for Pattern Recognition www.pr.informatik.uni-siegen.de

Institute for Vision and Graphics University of Siegen, Germany

Introduction

Path Searching

orrelations

Template Models

CBIR with RF

Template Matching in Practice 1 Introduction

- 2 Measures Based on Optimal Path Searching Techniques
- 3 Measures Based on Correlations
- 4 Deformable Template Models
- 5 Content-Based Information Retrieval with Relevance Feedback
- 6 Template Matching in Practice

Introduction

Path Searching

Correlation

Deformable Template Models

CBIR with RF

Template Matching in Practice

1 Introduction

- 2 Measures Based on Optimal Path Searching Techniques
- 3 Measures Based on Correlations
- 4 Deformable Template Models
- 5 Content-Based Information Retrieval with Relevance Feedback
- 6 Template Matching in Practice

Introduction

Introduction

Searching

Correlation

Template Models

CBIR with RF

- In previous lectures, the major concern was to assign an unknown pattern to one of the possible classes.
- Now, we assume that a set of reference patterns is available to us, and we have to decide which one of these reference patterns matches best the unknown pattern (test pattern).
- A reasonable first step in approaching such a task is to define a measure or a cost measuring the distance or the similarity between the known reference patterns and the unknown test pattern.

An Example Tool for Image Similarity Measure

Introduction

Path Searching

Correlation

Deformabl Template Models

CBIR with RI

Introduction

Path Searching

Correlations

Deformable Template Models

CBIR with RF

Template Matching in Practice 1 Introduction

2 Measures Based on Optimal Path Searching Techniques

3 Measures Based on Correlations

4 Deformable Template Models

5 Content-Based Information Retrieval with Relevance Feedback

Introduction

Introduction

Path Searching

Correlation

Template Models

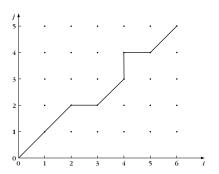
CBIR with RF

- Here, the focus is on a category of template matching, where the involved patterns consist of strings of identified symbols or feature vectors (string patterns).
- Each of the reference and test patterns is represented as a sequence (string) of measured parameters and one has to decide which reference sequence matches best the test pattern.
- Let r(i), i = 1,..., I and t(j), j = 1,2,..., J be the respective feature vector sequences for a specific pair of reference and test patterns. In general I ≠ J.
- The objective is to develop an appropriate distance measure between the two sequences.

Approach in General (1)

Introduction

Searching


Path

Correlations

Template Models

CBIR with RF

Template Matching in Practice We form a two-dimensional grid with the elements of the two sequences as points on the respective axes. Example for I = 6 and J = 5 looks like follows:

• Each node (i,j) is associated with a cost (distance) d(i,j).

Approach in General (2)

Introduction

Path Searching

Correlation

Deformable Template Models

CBIR with RF

Template Matching in Practice The path from the initial to a final node is an ordered set of nodes

$$(i_0,j_0),(i_1,j_1),(i_2,j_2),\ldots,(i_f,j_f)$$

ullet Each path is associated with an overall cost D defined as

$$D = \sum_{k=0}^{K-1} d(i_k, j_k) \equiv D(i_k, j_k); \qquad D(0, 0) = 0$$

where K is the number of nodes along the path.

• The path is complete if $(i_0, j_0) = (0, 0)$; $(i_f, j_f) = (I, J)$.

Approach in General (3)

Introduction

Path Searching

Correlation

Deformable Template Models

CBIR with RF

- The distance between the two sequences is defined as **the minimum** *D* **over all possible paths**.
- At the same time, the minimum cost path unravels the pairwise correspondence between the elements of the two sequences.

Introduction

Searching

Correlations

Deformable Template Models

CBIR with RF

Template Matching in Practice 1 Introduction

- 2 Measures Based on Optimal Path Searching Techniques
- 3 Measures Based on Correlations
- 4 Deformable Template Models
- 5 Content-Based Information Retrieval with Relevance Feedback
- 6 Template Matching in Practice

Introduction

Introduction

Searching

Correlations

Deformable Template Models

CBIR with RF

Template Matching in Practice • The major task to be addressed in this section can be summarised as follows: "Given a block of recorded data, find whether a specific known reference pattern is contained within the block and where it is located."

 A typical application of this is found in scene analysis, when we want to search for a specific objects within the image.

Approach in General (1)

Introduction

Path Searching

Correlations

Template Models

CBIR with RF

Matching in Practice

• Given are a reference pattern expressed as an $M \times N$ image array $\mathbf{r}(i,j)$ and $I \times J$ image array $\mathbf{t}(i,j)$, where $M \leq I$ and $N \leq J$.

• The goal is to develop a measure for detecting an $M \times N$ subimage within $\mathbf{t}(i,j)$ that matches best the reference pattern $\mathbf{r}(i,j)$.

Approach in General (2)

Searching Correlations

CBIR with RF

Matching in

• The reference image $\mathbf{r}(i,j)$ is superimposed on the test image $\mathbf{t}(i,j)$ and it is translated to all possible positions (m, n).

• For each of the points (m, n), the mismatch between $\mathbf{r}(i,j)$ and the $M \times N$ subimage of $\mathbf{t}(i,j)$ is computed according to

$$D(m,n) = \sum_{i=m}^{m+M-1} \sum_{j=n}^{n+N-1} |t(i,j) - r(i-m,j-n)|^2$$

• The template matching algorithm looks for the location (m, n) for which D(m, n) is minimum.

Introduction

Path Searching

orrelations

Deformable Template Models

CBIR with RF

Template Matching in Practice 1 Introduction

- 2 Measures Based on Optimal Path Searching Techniques
- 3 Measures Based on Correlations
- 4 Deformable Template Models
- 5 Content-Based Information Retrieval with Relevance Feedback
- 6 Template Matching in Practice

Introduction

Introduction

Searching

Correlation

Deformable Template Models

CBIR with RF

- By now we have been looking for the perfect match between the reference and the test pattern.
- However, there are many problems where we know a priori
 that the available template and the object we search for in
 the image may not look exactly the same (remember the
 demo with the system for sketch-based image retrieval).
- Our goal here is to allow the template matching procedure to account for deviations between the reference template and the corresponding test pattern in the image.
- Thus, we will focus on shape information only.

Approach in General (1)

Introduction

Searching

Correlations

Deformable Template Models

CBIR with RF

Template Matching in Practice • The basic idea is simple: Deform the prototype and produce deformed variants of it.

- From a mathematical point of view a deformation consists of the application of a parametric transform T_{ξ} on $\mathbf{r}(i,j)$.
- Different values of ξ lead to different versions.
- From the set of the deformed prototype variants that can be generated, there will be one that best matches the test pattern.

Approach in General (2)

Introduction

Searching

Correlations

Deformable Template Models

CBIR with RF

- The goodness of fit is measured via a cost which is called the matching energy $E_m(\xi)$.
- The cost measuring the deformation, which the prototype needs to undergo in order to fit the test pattern is called the cost deformation energy $E_d(\xi)$.
- The optimal vector parameter ξ is chosen so that the best trade-off between these two energy terms is achieved.

Introduction

Path Searching

Correlations

Deformable Template Models

CBIR with RF

Template Matching in Practice 1 Introduction

- 2 Measures Based on Optimal Path Searching Techniques
- 3 Measures Based on Correlations
- 4 Deformable Template Models
- 5 Content-Based Information Retrieval with Relevance Feedback
- 6 Template Matching in Practice

General about CBIR

Introduction

Path Searching

Correlation

Deformable Template Models

CBIR with RF

Template Matching in Practice The more traditional way of information retrieval is text-based; stored information is manually annotated by text descriptors.

 In CBIR, stored information is indexed and searched based on its content.

A Popular Metric for CBIR

Introduction

Path Searching

Correlations

Deformable Template Models

CBIR with RF

Matching in Practice

A popular metric that has extensively been used for CBIR is

$$d(\mathbf{x},\mathbf{y}) = \left(\sum_{i=1}^{l} \omega_i |x_i - y_i|^p\right)^{\frac{1}{p}}$$

• Obviously, for p=2 and $\omega_{i=1,2,...,l}=1$ this becomes the Euclidean distance and for p=1 the so called weighted l_1 (Manhattan) norm.

Content-Based Video Retrieval System

Introduction

Searching

Correlations

Template Models

CBIR with RF

Disadvantages of CBIR Systems

Introduction

Searching

Correlation

Template Models

CBIR with RF

- Search and retrieval are based on low-level features.
- Humans, being much more intelligent that the machines, utilise a number of so called high-level concepts when they recognise objects.
- This discrepancy is called semantic gap.

Relevance Feedback in CBIR - Intro

Introduction

Path Searching

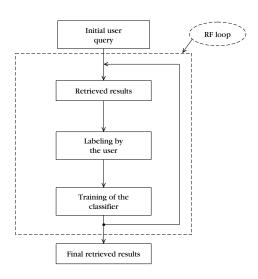
Correlation

Template Models

CBIR with RF

- The mentioned problem with the semantic gap can partly be solved by involving the human into the retrieval process.
- The search/retrieval session is divided into a number of consecutive loops.
- At every loop, the user provides feedback regarding the results by characterising the retrieved patterns as either relevant or irrelevant.

Relevance Feedback in CBIR - a Typical Scenario


ntroduction

Path Searching

Correlations

Deformable Template Models

CBIR with RF

Evaluation of the CBIR Systems

Introduction

Searching Searching

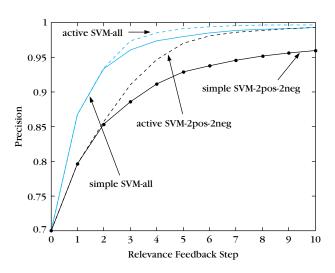
Correlations

Deformable Template Models

CBIR with RF

- Precision is the ratio of relevant patterns to the total number of patterns in the set of returned patterns P_r.
- **Recall** is the ratio of returned relevant patterns to all relevant patterns in the database.

Evaluation of Different Strategies


Introduction

Searching

Correlations

Template Models

CBIR with RF

Introduction

Path Searching

Correlations

Deformable Template Models

CBIR with RF

- 1 Introduction
- 2 Measures Based on Optimal Path Searching Techniques
- 3 Measures Based on Correlations
- 4 Deformable Template Models
- 5 Content-Based Information Retrieval with Relevance Feedback
- 6 Template Matching in Practice