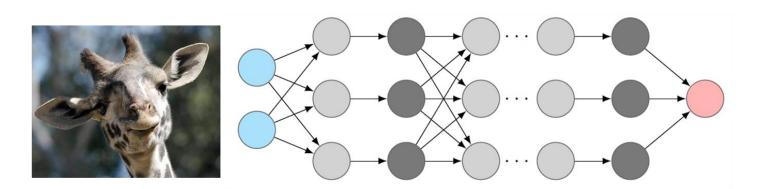


Lecturer: Michael Möller – michael.moeller@uni-siegen.de

Exercises: Hartmut Bauermeister – hartmut.bauermeister@uni-siegen.de



UNIVERSITÄT Towards more complex networks

Our linear wine regression network architecture

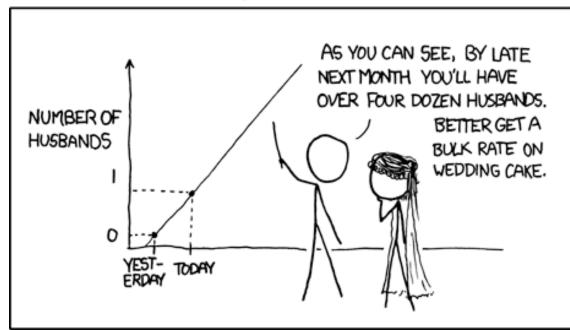
$$\mathcal{N}(x;\theta) = \begin{pmatrix} x \\ 1 \end{pmatrix}^T \theta$$

was quite simplistic. In particular $\theta_{11} > 0$ means the more alcohol, the better the wine, and $\theta_{11} < 0$ means the opposite.

MY HOBBY: EXTRAPOLATING

First conclusion: Be careful with extrapolating your network!

Your model is unlikely to hold far beyond the training examples! E.g. drinks with 0% or 100% alcohol will surely both not be rated as great wines!



from https://xkcd.com/605/

UNIVERSITÄT Towards more complex networks

A linear network architecture

$$\mathcal{N}(x;\theta) = \begin{pmatrix} x \\ 1 \end{pmatrix}^T \theta$$

is of course quite simplistic. In particular $\theta_{11} > 0$ means the more alcohol, the better the wine, and $\theta_{11} < 0$ means the opposite.

How do we represent more complex, nonlinear relations with a network?

Idea of **deep** learning: **Deeply nested** functions!

$$\mathcal{N}(x;\theta) = \ell^L(\ell^{L-1}(\dots(\ell^1(x;\theta^1)\dots);\theta^{L-1});\theta^L)$$

- Separate functions ℓ^i are often called *layers*.
- Each layer may or may not have learnable parameters $\, heta^{\imath}$.

How many layers a network needs to be *deep* is unclear. I also do not think there is a mathematically well-defined notion of uniquely identifying *layers*.

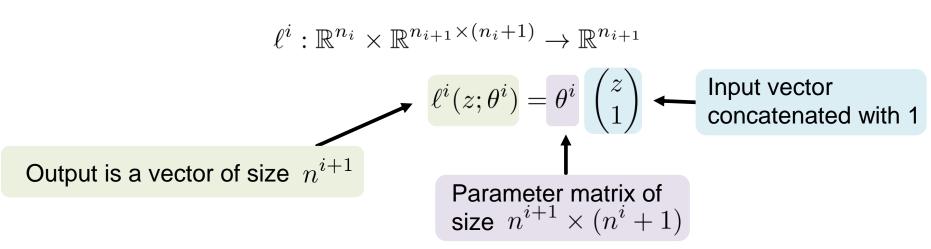
UNIVERSITÄT Towards more complex networks

Idea of **deep** learning: **Deeply nested** functions!

$$\mathcal{N}(x;\theta) = \ell^L(\ell^{L-1}(\dots(\ell^1(x;\theta^1)\dots);\theta^{L-1});\theta^L)$$

But which functions should we compose?

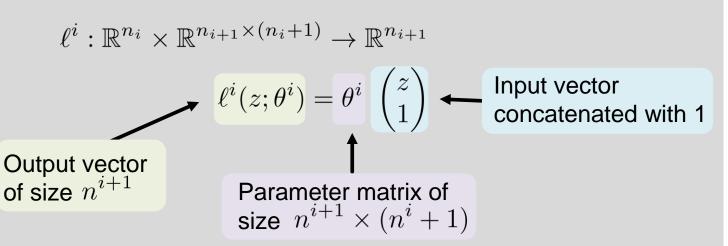
How about several affine linear functions?



Linear functions only are a <u>bad idea!!</u> Discuss: This would not be more expressive than our initial linear regression network!

$$\mathcal{N}(x;\theta) = \ell^L(\ell^{L-1}(\dots(\ell^1(x;\theta^1)\dots);\theta^{L-1});\theta^L)$$

We have to break the linearity to obtain something more expressive! Simplest way: Only choose every other function to be affine linear!



This is called a fully connected layer!

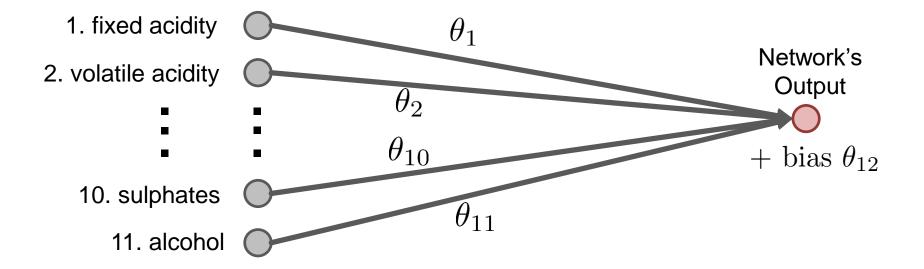
If the index i is even:

Use a simple, componentwise nonlinear function!

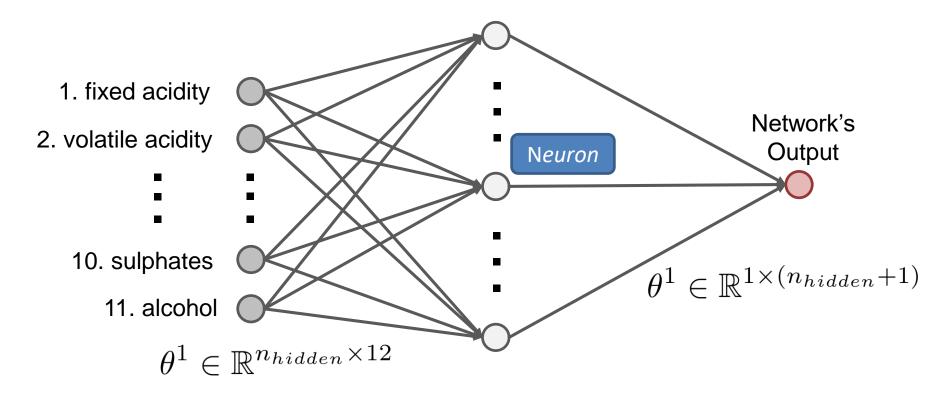
Example:
$$\ell^i: \mathbb{R}^{n_i} \to \mathbb{R}^{n_i}$$
 rectified linear unit
$$(\ell^i(z))_j = \max(z_j, 0)$$

This is called an activation function!

Visualizing the architecture of the network: Linear regression

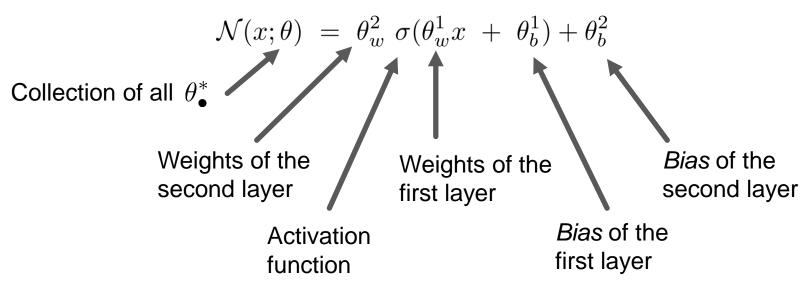


Visualizing the architecture of the network: One hidden layer network



In the visualization of networks one implicitly assumes that activation functions are included in all *hidden* neurons! Visualization and terminology are biologically motivated!

One hidden layer network in a formula:

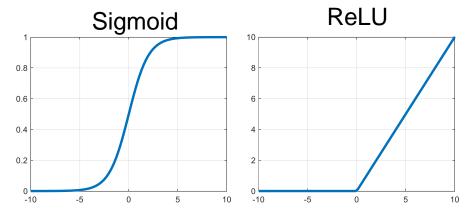


Common choices for the activation function:

$$(\sigma(z))_j = \frac{e^{z_j}}{e^{z_j} + 1}$$

Rectified linear unit (ReLU)

$$(\sigma(z))_j = \max(z_j, 0)$$



One hidden layer network in a formula:

$$\mathcal{N}(x;\theta) = \theta_w^2 \ \sigma(\theta_w^1 x + \theta_b^1) + \theta_b^2$$

We can of course go from one to two ...

$$\mathcal{N}(x;\theta) = \theta_w^3 \ \sigma(\theta_w^2 \ \sigma(\theta_w^1 x + \theta_b^1) + \theta_b^2) + \theta_b^3$$

... or many hidden layers

$$\mathcal{N}(x;\theta) = \phi^L(\sigma(\phi^{L-1}(\dots(\sigma(\phi^1(x;\theta^1))\dots);\theta^{L-1}));\theta^L)$$

where

$$\phi^{i}(z;\xi) = \xi_{w}z + \xi_{b}, \quad \forall i \in \{1, \dots, L\}$$

and σ is your favorite activation function, e.g. the rectified linear unit.

These kinds of networks are called *fully connected networks*!

Visualizing the architecture of such fully connected networks

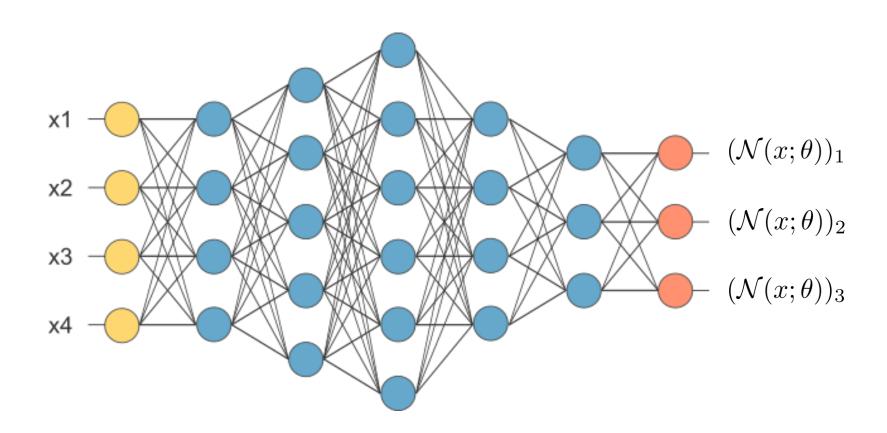


Image taken from https://www.neuraldesigner.com/

Let us postpone the question what a good choice of an architecture is in applications and first wonder how to extend the *training* to deep networks!

Naturally, nothing changes from slide 5 of the first lecture: We aim at minimizing costs

$$E(\theta) = \sum_{j} \mathcal{L}(\mathcal{N}(x_j, \theta), y_j)$$

e.g. with $\mathcal{L}(\mathcal{N}(x_j, \theta), y_j) = \|\mathcal{N}(x_j, \theta) - y_j\|^2$, and are interested in

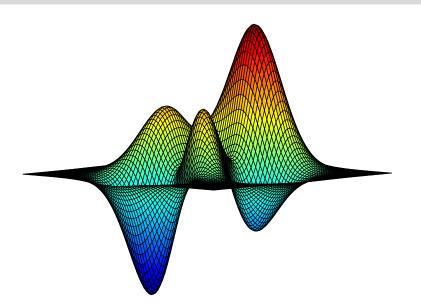
the argument that minimizes the training costs:

$$\hat{\theta} = \arg\min_{\theta} E(\theta)$$

A necessary condition for a minimizer was $\ \nabla E(\hat{\theta}) = 0$.

In the linear regression case, this equation was just a linear system and due to convexity, the necessary condition was also sufficient.

Training algorithms



Unfortunately, as soon as the network has at least one hidden layer, the optimization becomes much more difficult!

Reason: High dimensional nonconvex functions can rarely be optimized to global optimality!

<u>Common deep learning approach</u>: Resign the desire to compute global minimizers! Iteratively reduce the training costs – at most until you reach $\nabla E(\hat{\theta}) = 0$. One never even checks sufficient conditions for *local* minima.

Most commonly used algorithms are variants of

gradient descent!

Gradient Descent + Backpropagation

Gradient descent

Basic idea: For a continuously differentiable $E: \mathbb{R}^n \to \mathbb{R}$, the quantity

 $-\nabla E(\theta)$ points into the direction of steepest descent.

Move into this direction!

$$\theta(k+1) = \theta(k) - \tau \nabla E(\theta(k))$$

New parameters

Previous parameters

Direction of steepest descent

The parameter τ is called *step-size* or *learning rate*.

Discussions on the board:

- 1. If the iteration converges, it converges to a point $\,\hat{\theta}\,$ with $\,\nabla E(\hat{\theta})=0$
- 2. For a sufficiently small τ it holds that $E(\theta(k+1)) \leq E(\theta(k))$, (even strict inequality if the algorithm has not yet converged)

Gradient descent

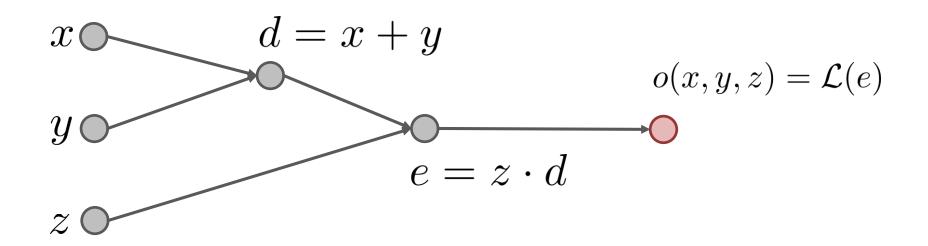
Main question for us: How do we compute the gradient of a deeply nested function?

Remember: Chain rule

$$E = f \circ g \quad \Rightarrow \quad \nabla E(x) = \nabla g(x) \cdot \nabla f(g(x))$$

The above question boils down to: How to apply the chain rule many times efficiently! Answer: Compute graphs using *backpropagation* (Rumelhart 1986).

Backpropagation - example



What is

$$\frac{\partial o}{\partial x}(x,y,z)$$
 $\frac{\partial o}{\partial y}(x,y,z)$ $\frac{\partial o}{\partial z}(x,y,z)$?

Backpropagation - example

1. Chain rule

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial e}{\partial x} \cdot \frac{\partial \mathcal{L}}{\partial e}$$
$$\frac{\partial e}{\partial d}(d, z) = z$$

2. Chain rule

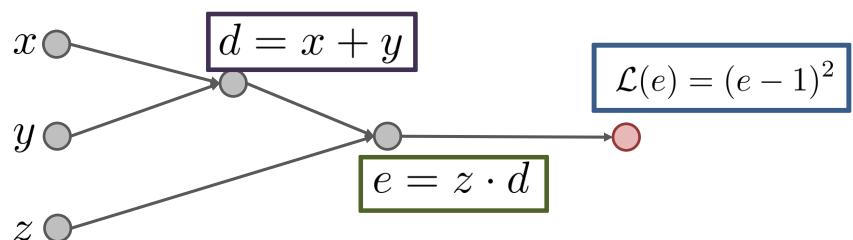
$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial e}{\partial x} \cdot \frac{\partial \mathcal{L}}{\partial e}$$

$$\frac{\partial e}{\partial d}(d, z) = z$$

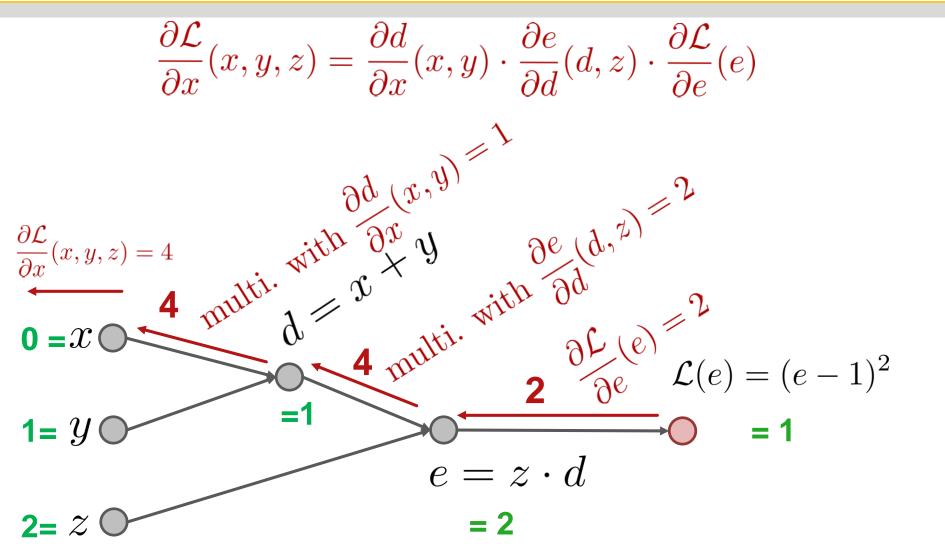
$$\frac{\partial \mathcal{L}}{\partial e}(e) = 2(e - 1)$$

$$\frac{\partial d}{\partial x}(x,y) = 1$$

$$\Rightarrow \frac{\partial \mathcal{L}}{\partial x}(x, y, z) = \frac{\partial d}{\partial x}(x, y) \cdot \frac{\partial e}{\partial d}(d, z) \cdot \frac{\partial \mathcal{L}}{\partial e}(e)$$

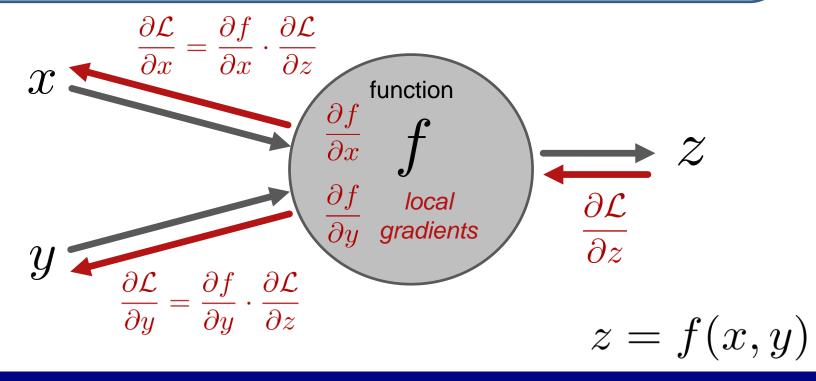


Backpropagation - example



Backpropagation

<u>Important observation</u>: Each node in the compute graph, is just interested in its own input and output! It only needs to know its *local gradient*, i.e., the derivatives with respect to its inputs. The latter is then merely multiplied with the gradient that has been *backpropagated* to this node.

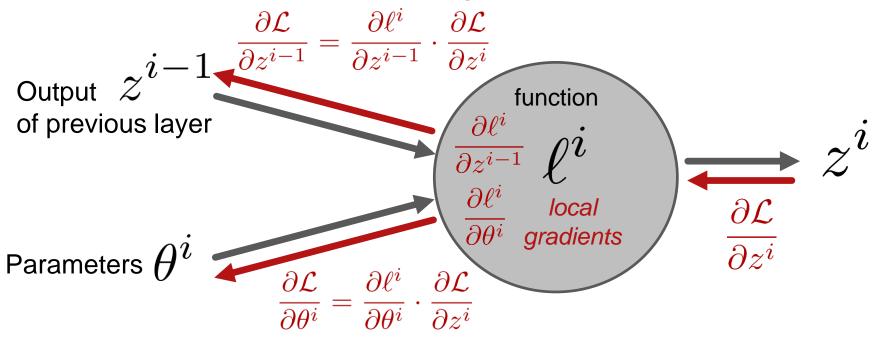


Backpropagation

Typical situation for deeply nested functions with individual parameters in each layer:

$$\mathcal{N}(x;\theta) = \ell^L(\ell^{L-1}(\dots(\ell^1(x;\theta^1)\dots);\theta^{L-1});\theta^L)$$

Derivative to be propagated backwards into the network



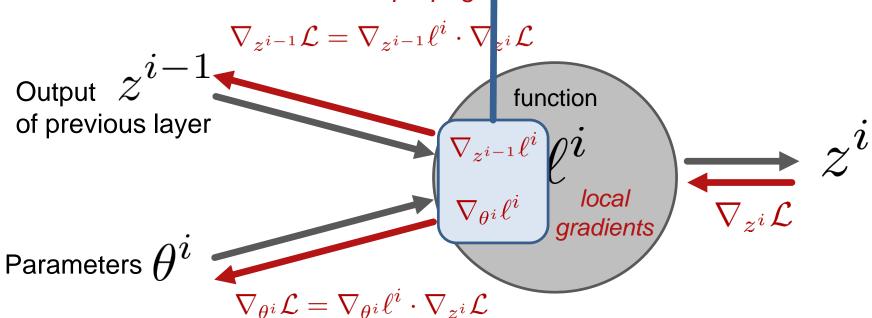
Derivative w.r.t. parameters

Backpropagation

The previous slide covered the scalar valued case. How about vectors?

These *local gradients* are matrices now! (Transposed Jacobians!)

Derivative to be propagated backwards into the network



Derivative w.r.t. parameters

Some layer pseudocode


```
class my_function_in_a_network:
         def __init__(self, parameters, input1, input2, ...):
                  self.parameters = parameters
                  self.input1 = input1
         def forward(self, input1, input2, ...):
                  z = evaluate_my_function(input1, ..., self.parameters)
                  self.input1 = input1
                  self.input2 = input2
                  return z
         def backward(self, dz):
                  d_params = dz_dParams(self.input1, ..., self.parameters) * dz
                  d_input1 = dz_dInput1(self.input1, ..., self.parameters) * dz
                  d_input2 = dz_dInput2(self.input1, ..., self.parameters) * dz
                  return [d_params, d_input1, d_input2, ...]
```