Chapter 2 Linear inverse imaging problems

Variational Methods for Computer Vision WS 16/17

Michael Moeller Visual Scene Analysis Department of Computer Science University of Siegen Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

updated 22.12.2016

Image Denoising

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting
Dictionary learning

Exemplar based techniques

Denoising

We have seen

Linear inverse imaging problems

Michael Moeller

Denoi

TV regularization MAP estimates

Non-local regularization

Deblurring

.

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

nage iornation

Inpainting

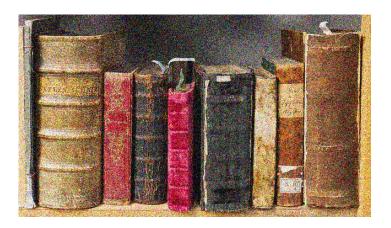
Dictionary learning

Exemplar based techniques

X-ray reconstruction

Denoising

We have seen



Linear inverse imaging problems

Michael Moeller

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Denoising

We have seen

Linear inverse imaging problems

Michael Moeller

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator Demosaicking

Convex relaxation

Image formation

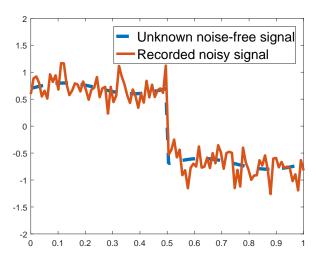
Inpainting

Dictionary learning

Exemplar based techniques

Beyond quadratic ℓ^2 -denoising

For signals:



Linear inverse imaging problems

Michael Moeller

Deno

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

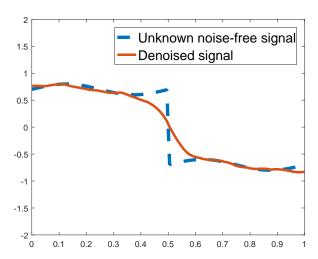
Image formation

Inpainting

Dictionary learning Exemplar based techniques

Beyond quadratic ℓ^2 -denoising

For signals:



Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoi

TV regularization MAP estimates

Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

JUNEX TEIAXALIUN

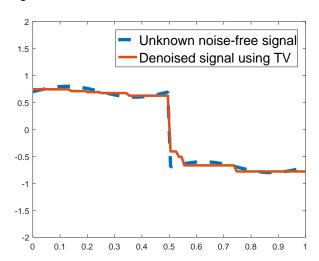
Image formation

Inpainting

Dictionary learning Exemplar based techniques

Beyond quadratic ℓ^2 -denoising

For signals:



Linear inverse imaging problems

Michael Moeller

Deno

TV regularization

MAP estimates

Non-local regularization

Deblurring

ebiurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Total variation regularization

For signals we used $||Du||_1$, but what shall we use for images?

Total variation regularization (grayscale)

Let $u: \Omega \to \mathbb{R}$, respectively $u \in \mathbb{R}^n$:

$$\int_{\Omega} |\nabla u(x)| \ dx$$

$$\sum_{i} \sqrt{(D_x u)_i^2 + (D_y u)_i^2}$$

anisotropic
$$\int_{\Omega} |\partial_{x_1} u(x)| + |\partial_{x_2} u(x)| dx \sum_i |(D_x u)_i| + |(D_y u)_i|$$

$$\sum_{i} |(D_{x}u)_{i}| + |(D_{y}u)_{i}|$$

For the sake of compact writing we will sometimes understand $D: \mathbb{R}^n \to \mathbb{R}^{n \times d}$ by stacking the x- and y-derivatives in the second dimension of Du. We write

$$||Du||_{2.1}$$

where
$$||A||_{1,q} = \sum_{i} ||A_{i,:}||_{q}$$
.

anisotropic $||Du||_{1,1}$ Linear inverse imaging problems

Michael Moeller

Visual Scene

Denoising TV regularization

MAP actimates

Non-local regularization

Deblurring

Zoomina Downsampling operator

Demosaicking Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Color total variation regularization

fully isotropic

Let $u: \Omega \to \mathbb{R}^c$, respectively $u \in \mathbb{R}^{n \times c}$. Now we have many more options, e.g.

fully anisotropic $\sum_{i} \int_{\Omega} |\partial_{x_{1}} u^{i}(x)| + |\partial_{x_{2}} u^{i}(x)| \ dx$

spatially isotropic, $\sum_i \int_{\Omega} \sqrt{(\partial_{x_1} u^i(x))^2 + (\partial_{x_2} u^i(x))^2} \ dx$ colors anisotropic

spatially anisotropic, $\int_{\Omega} \sqrt{\sum_i (\partial_{x_1} u^i(x))^2} + \sqrt{\sum_i (\partial_{x_2} u^i(x))^2} \ dx$ colors isotropic

 $\int_{\Omega} \sqrt{\sum_{i} (\partial_{X_{1}} u^{i}(x))^{2} + (\partial_{X_{2}} u^{i}(x))^{2}} dx$

If not stated otherwise, I will use the fully isotropic version and denote it by $\|Du\|_{2,2,1}$ in the discrete setting. ¹

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization
MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning
Exemplar based techniques

X-ray reconstruction

updated 22.12.2016

¹For details: Duran et al. '16, *Collaborative Total Variation: A General Framework for Vectorial TV Models*.

Implementation of total variation regularization

- Since norms are not differentiable, we will smooth them.
- One way of smoothing it is to replace

$$\|d\|_2 = \sqrt{\sum_i d_i^2} \qquad \rightarrow \qquad \sqrt{\sum_i d_i^2 + \epsilon^2}$$

• Another way of smoothing is the *Huber-loss* $H(z) = \sum_i h_{\epsilon}(z_i)$ with

$$h_{\epsilon}(z_i) = egin{cases} rac{1}{2}z_i^2 & ext{if } |z_i| \leq \epsilon \ \epsilon(|z_i| - rac{1}{2}\epsilon) & ext{else} \end{cases}$$

- For both ways of smoothing one can expect to approximate $\|\cdot\|_2$ more closely as $\epsilon \to 0$.
- The smaller ϵ , the smaller the descent time step!

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization

MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting
Dictionary learning

Exemplar based techniques

X-ray reconstruction

updated 22.12.2016

Various denoising results

Original

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking Convex relaxation

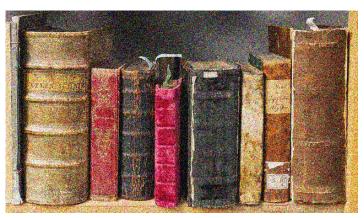
Jonvex relaxation

Image formation

Inpainting Dictionary learning

Exemplar based techniques

Various denoising results



Noisy

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Various denoising results

 ℓ^2 squared

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting Dictionary learning

Exemplar based techniques

Various denoising results

Smoothed $\epsilon = 0.1$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates Non-local regularization

Deblurring

'aamina

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Jonvex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Various denoising results

Smoothed $\epsilon = 0.01$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates Non-local regularization

Deblurring

'aamina

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Convex relaxation

Image formation

Inpainting Dictionary learning

Exemplar based techniques

Various denoising results

Smoothed $\epsilon = 0.001$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Various denoising results

Smoothed $\epsilon = 0.01$, double-opponent color TV

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

von-iocai regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

A ray reconstruction

Many improvements are based on the idea: Encourage jumps in the color channels to be in the same place

Possible by changing the penalty function of $\nabla u(x)$, or changing the color space of u, e.g. into intensity, hue, saturation.

Example result of the previous slide: *Double-Opponent Vectorial Total Variation* of Aström and Schnörr, ECCV 16:

$$TV_{DOVTV}(u) = TV(u^R) + TV(u^G) + TV(u^B) + TV(u^R - u^G) + TV(u^R - u^B) + TV(u^G - u^B)$$

for $u = (u^{R}, u^{G}, u^{B})$.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Brief summary

- Images have discontinuities
- ℓ^2 squared regularization, i.e.

$$\hat{u} = \underset{u}{\operatorname{argmin}} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \|Du\|_{F}^{2}$$

blurs the resulting images!

• Replacing $\|\cdot\|_F^2$ by $\|\cdot\|_{2,2,1}$, i.e.,

$$\hat{u} = \underset{u}{\operatorname{argmin}} \frac{1}{2} ||u - f||_{2}^{2} + \alpha ||Du||_{2,1,1}$$

gives significantly better results!

Question: What about the data term? Can a penalty different from $\frac{1}{2}||u-f||^2$ improve the results even further?

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Answer: That depends on the noise we expect *f* to have!

Considered measurements f.

Desired: Noise-free version u.

· Question: What is our best guess?

Consider noise as a random variable.

• Idea: Maximize p(u|f).

Board: Maximum a-posteriori probability (MAP) estimates.

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

TV regularization
MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

MAP estimates: Maximize p(u|f)

$$\hat{u} = \arg \max_{u} \ p(u|f) \stackrel{\text{Bayes}}{=} \arg \max_{u} \ \frac{p(f|u)p(u)}{p(f)}$$

Now minimize the negative log-likelihood:

$$\hat{u} = \arg\min_{u} - \log\left(\frac{p(f|u)p(u)}{p(f)}\right)$$

$$= \arg\min_{u} - \log(p(f|u)) - \log(p(u))$$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

$$\hat{u} = \arg\min_{u} - \log(p(f|u)) - \log(p(u))$$

Question for p(f|u) – noise model. E.g. Gaussian distribution

$$p(f|u) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\|u - f\|^2}{2\sigma^2}\right)$$

Question for p(u) – image prior. E.g. Laplace distribution of the gradient

$$p(u) = \frac{1}{2\beta} \exp\left(-\frac{\|Du\|_{2,2,1}}{\beta}\right)$$

Leads to

$$\hat{u} = \arg\min_{u} \frac{1}{2\sigma^{2}} \|u - f\|^{2} + \frac{1}{\beta} \|Du\|_{2,2,1}$$

$$= \arg\min_{u} \frac{1}{2} \|u - f\|^{2} + \underbrace{\frac{\sigma^{2}}{\beta}}_{=:\alpha} \|Du\|_{2,2,1}$$

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising TV regularization

MAP estimates

Non-local regularization

. . . .

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

updated 22.12.2016

Other data terms:

Laplace noise - ℓ¹:

$$||u - f||_1$$

Poisson noise - Kullback Leibler:

$$\sum_i u_i - f_i \log(u_i)$$

· Multiplicative speckle noise:

$$\frac{1}{2\sigma}\sum_{i}\frac{u_{i}-f_{i}}{u_{i}}+\frac{1}{2}\log(u_{i})$$

Example: Removing salt-and-pepper noise

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting Dictionary learning

Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

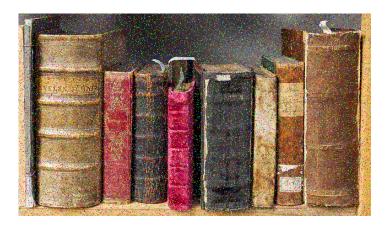
Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques



Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

TV regularizatio

MAP estimates

Non-local regularization

.

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Further image priors

We have seen: Adapting the data term based on the MAP estimate

$$\hat{u} = \arg\min_{u} - \log(p(f|u)) - \log(p(u))$$

can greatly improve the results!

Question: Can we obtain further improvements by also adapting p(u)?

Much more freedom since the question for "how likely is an image" is very difficult!

Certain modeling assumption lead to certain regularizations and can improve results.

Next topic: nonlocal regularization!

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates

Non-local regularization

. . .

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

One good assumption for many practical applications is that images are self-similar.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

One good assumption for many practical applications is that images are self-similar.

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

One good assumption for many practical applications is that images are self-similar.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

One good assumption for many practical applications is that images are self-similar.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

ebiurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

One good assumption for many practical applications is that images are self-similar.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

columning

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

Nonlocal filtering

For denoising, one can constrain pixels that lie in similar patches to have similar values!

Let $p_{i,j} \in \mathbb{R}^{w \times w}$ be a patch of the (noisy) input image f of size $w \times w$ centered around pixel (i,j). One determines the similarity matrix W by

$$W_{(i,j),(k,l)} = \exp\left(-\frac{\|p_{i,j} - p_{k,l}\|^2}{\sigma^2}\right).$$

Different options what to do with the similarity matrix. Simple option: **Non-local means**².

Normalize weights in W to $\sum_{(l,k)} W_{(i,j),(k,l)} = 1$ for all (i,j). Then determine

$$u_{i,j} = \sum_{k,l} W_{(i,j),(k,l)} f_{k,l}$$

Michael Moeller

Visual Scene Analysis

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

ebiurring

Zooming
Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Linear inverse imaging problems

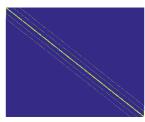
²A. Buades, J.-M. Morel. *A non-local algorithm for image denoising*, 2005

Similarity matrices

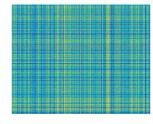
Problem: For $u \in \mathbb{R}^{n \times m}$ one has $W \in \mathbb{R}^{nm \times nm}$!

Two options:

Sparse W, high rank



Dense W, low rank



For sparse matrices:

- **1** Compute the weights only in an $s \times s$ neighborhood of each (i, j), such that $W \in \mathbb{R}^{nm \times s^2}$.
- Use greedy methods to find the s (approximate) nearest neighbors

For low rank matrices: use Nystrom extension (discussed later)

Linear inverse imaging problems

Michael Moeller

TV regularization
MAP estimates
Non-local regularization

on-local regularization

Deblurring

Denoising

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Nonlocal means

Illustration for local nearest neighbor search (for a slightly different algorithm)

Example of how NL-means works

Nonlocal means

$$u_{i,j} = \sum_{k,l} W_{(i,j),(k,l)} f_{k,l}$$

is a filter. Is there a variational method behaving similarly?

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization MAP estimates

Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Nonlocal regularization

Idea: Use

$$R(u) = \frac{1}{2} \sum_{(i,j)} \sum_{(k,l)} W_{(i,j),(k,l)} (u_{i,j} - u_{k,l})^2$$

as a regularization.

For simplicity, let us assume we vectorize our images such that

$$R(u) = \frac{1}{2} \sum_{s} \sum_{t} W_{s,t} (u_s - u_t)^2$$

Let us do one step of gradient descent with step size 1 starting from $u_0 = f$:

$$u_1 = f - \nabla R(f)$$

We find

$$(\nabla R(u))_I = \sum_t W_{I,t}(u_I - u_t) \stackrel{\text{if normalized}}{=} u_I - \sum_t W_{I,t}u_t$$

Linear inverse imaging problems

Michael Moeller

Visual Scene

Denoising TV regularization MAP estimates

Non-local regularization Deblurring

Zoomina

Downsampling operator Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques X-ray reconstruction

Nonlocal regularization

Our gradient descent step becomes

$$u_1 = f - \nabla R(f) = f - (f - Wf) = Wf$$

One step of gradient descent is the same as nonlocal means!

Particularly interesting:

$$abla R(u) = \underbrace{u}_{\text{current point}} - \underbrace{Wu}_{\text{Average of (nonlocal) neighborhood}}$$

Particularly interesting:

 $\nabla R(u) = \langle u \rangle$

Graph Laplacian

Consider our very first regularization:

 $J(u) = \frac{1}{4} \|Du\|_2^2 = \frac{1}{4} \sum_i (u_i - u_{i-1})^2 \approx \frac{1}{2} \|\nabla u\|_2^2$

The derivative (away from the boundary) is

Michael Moeller

Linear inverse imaging

problems

Visual Scene A nalvsis

Denoising TV regularization MAP estimates

Non-local regularization Deblurring

Zoomina Downsampling operator Demosaicking

Convex relaxation Image formation

Inpainting Dictionary learning Exemplar based techniques

X-ray reconstruction

Graph Laplacian

For $u : \mathbb{R}^d \to \mathbb{R}$ it holds that³

$$\Delta u(x) = \lim_{\epsilon \to 0} \frac{2d}{c(\epsilon)} \left(\text{Average}_{N_{\epsilon}(x)}(u) - u(x) \right)$$

We can interpret a similarity matrix *W* of an image as a graph! Neighborhoods are defined by those points that have large similarity values (strong edges).

To normalize the matrix W let us define $D = \operatorname{diag}(d_i)$ for

$$d_i = \sum_j W_{i,j}$$

 \rightarrow The operator $(D^{-1}W - I)$ provides the notion of a Laplacian operator on a graph!

https://www.pathlms.com/siam/courses/2426/sections/3234 for details.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising
TV regularization
MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

-:--:--

Inpainting
Dictionary learning

Exemplar based techniques

X-ray reconstruction

³See talk by Peyman Milanfar

Graph Laplacian

Unfortunate: $L = D^{-1}W - I$ is not symmetric (and called random walk Laplacian).

Some alternative proposals for graph Laplacians

Unnormalized Laplacian L = W - D

Normalized Laplacian $L = D^{-1/2}WD^{-1/2} - I$

Sinkhorn Laplacian $L = C^{-1/2}WC^{-1/2} - I$

All the above versions are symmetric and negative semi-definite.

With any version we can use

$$R(u) = -\frac{1}{2}\langle u, Lu \rangle$$

as a regularization.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting
Dictionary learning

Exemplar based techniques

Implementation details - sparse similarity matrices

Typical procedure for computing W on an image $f \in \mathbb{R}^{n \times m}$.

- 1 Fix a search window size s around each pixel. The sparse matrix $W \in \mathbb{R}^{nm \times nm}$ has at most $(2s+1)^2 \cdot nm$ many entries.
- 2 Fix a patch size p, i.e. one computes

$$W_{(i,j),(k,l)} = \exp\left(-\sum_{r=-s}^{s}\sum_{t=-s}^{s}(f_{i+r,j+t}-f_{k+r,l+t})^2/h\right)$$

for a scaling factor h

Trick to make the computation of the $(2s+1)^2 \cdot nm$ many terms inside the exponential fast: *Integral images*.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

TV regularization MAP estimates

Non-local regularization

Deblurring

Denoising

ebiuiting

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Integral images

For each of the $(2s+1)^2$ many shifts (w, v)

- Shift f by (w, v) and denote the shifted version by g
- Compute $e = (f q)^2$ \leftarrow pointwise
- Compute an integral image I in which the (i, j)-th entry is the sum of all upper left pixels of e
- Patch-wise differences can be computed by evaluating only 4 points of I

See illustration for pictures, do exercise for formulas!

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization MAP estimates

Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Implementation details - low rank similarity matrices

The previous technique yields a high rank sparse matrix W.

Alternative: Dense low rank matrix. Common way to obtain this: Nyström extension.

Correspondence of a few pixels among each other $W_{X,X}$	Correspondence of the few pixels to all other pixels $W_{X,Y}$	
Correspondence of all other pixels to the few pixels $(W_{X,Y})^T$	Unknown correspondence of other pixels among each other $W_{Y,Y}$	W

One sets

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Nyström method

For $W \in \mathbb{R}^{N \times N}$ symmetric positive semi-definite we can write $W = B^T B$. Let us write $B = \begin{pmatrix} X & Y \end{pmatrix}$ for $X \in \mathbb{R}^{N \times I}$, $Y \in \mathbb{R}^{N \times N - I}$. We find

$$B^{T}B = \begin{pmatrix} X^{T} \\ Y^{T} \end{pmatrix} \begin{pmatrix} X & Y \end{pmatrix} = \begin{pmatrix} X^{T}X & X^{T}Y \\ Y^{T}X & Y^{T}Y \end{pmatrix}$$

The approxmation done by the Nystrom method is to set

$$\mathbf{Y}^T \mathbf{Y} \approx \mathbf{Y}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

For a more detailed derivation using eigenvector theory see for instance Fowlkes et al., *Spectral Grouping Using the Nyström Method*, PAMI 2004.

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates

Non-local regularization

and the second

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Nyström method

An approximate eigendecomposition of W is given as

$$W = \bar{U} \Sigma \bar{U}^T, \quad \text{for} \quad \bar{U} = \begin{pmatrix} U \\ (W_{X,Y})^T U \Sigma^{-1} \end{pmatrix} \in \mathbb{R}^{N \times r}$$

for $\Sigma \in \mathbb{R}^{r \times r}$ denoting the diagonal matrix with the eigenvalues of $W_{X,X} \in \mathbb{R}^{r \times r}$ on the diagonal and U being the corresponding eigenvectors.

Advantages of the Nyström method:

- We can store a dense $W \in \mathbb{R}^{N \times N}$ by storing $N \cdot n + n^2 << N^2$ values.
- Multiplication with W is cheap by carrying out 2 or 3 separate small matrix multiplications.
- Exercise: For W being of low rank and having rows that sum to one, there is an efficient formula for solving

$$\hat{u} = \underset{u}{\operatorname{argmin}} \frac{1}{2} \|u - f\|^2 + \frac{\alpha}{2} \langle u, (I - W)u \rangle$$

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

beblurning

Zooming Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Intermediate summary

Nonlocal methods construct a similarity matrix $W \in \mathbb{R}^{nm \times nm}$ on the input image $f \in \mathbb{R}^{n \times m}$

The nonlocal means filter computes a denoised version of f as $D^{-1}Wf$ where D is the diagonal matrix containing the row sums of W on the diagonal.

$$L = D^{-1}W - I$$
, $L = W - D$, and $L = D^{-1/2}WD^{-1/2} - I$ are possible variants for defining graph Laplacians.

Nonlocal regularization penalizes

$$R(u) = -\frac{1}{2}\langle u, Lu \rangle$$

in full analogy to our first simple local regularization

$$R(u) = -\frac{1}{2}\langle u, \Delta u \rangle = \frac{1}{2} \|\nabla u\|^2$$

The above methods become computationally feasible by either making *W* sparse or low rank (using Nyström's method).

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising
TV regularization
MAP estimates

Non-local regularization

Deblurring

Zooming Downsampling operator

Demosaicking
Convex relaxation

Image formation

ige formation

Inpainting
Dictionary learning

Exemplar based techniques

X-ray reconstruction

Rigorous treatment of nonlocal operators

General framework from Gilboa, Osher, *Nonlocal operators* with applications to image processing, 2008.

Let $w: \Omega \times \Omega \to \mathbb{R}^+$ be a symmetric similarity function, $u: \Omega \to \mathbb{R}$ an image. One defines the *nonlocal gradient*

$$(\nabla_w u)(x,y) = (u(y) - u(x))\sqrt{w(x,y)}$$

The nonlocal divergence is given by

$$(\operatorname{div}_{w}(v))(x) = \int_{\Omega} (v(x,y) - v(y,x)) \sqrt{w(x,y)} \, dy$$

With an additional factor of 1/2 one obtains the usual relation to the Laplacian

$$\Delta_w ju(x) = \frac{1}{2} \operatorname{div}_w(\nabla_w u)(x) = \int_{\Omega} (u(y) - u(x)) w(x, y) \ dy$$

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation
Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Rigorous treatment of nonlocal operators

With these definitions usual rules like

$$\langle \nabla_{w} u, v \rangle = \langle u, -\mathsf{div}_{w} v \rangle$$

hold.

In particular

$$\frac{1}{2}\|\nabla_w u\|^2 = -\langle u, \Delta_w u\rangle$$

Considering the improvements we got in the simple local setting by making the transition

$$\frac{1}{2}\|\nabla u\|^2 \quad \to \quad TV(u) = \int_{\Omega} \sqrt{(\partial_{x_1} u(x))^2 + (\partial_{x_2} u(x))^2} \ dx$$

it makes sense to also define the nonlocal Total Variation.

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting
Dictionary learning

Exemplar based techniques

X-ray reconstruction

...,

Nonlocal TV

We call

$$\int_{\Omega} \sqrt{\int_{\Omega} (u(y) - u(x))^2 w(x, y) \, dy} \, dx$$

the isotropic nonlocal total variation.

We call

$$\int_{\Omega} \int_{\Omega} |u(y) - u(x)| \sqrt{w(x,y)} \, dy \, dx$$

the anisotropic nonlocal total variation.

General tendency: Going from nonlocal quadratic to nonlocal TV regularization can also improve the results, but no nearly by as much as in the local case.

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Problems of nonlocal regularizations

Relies on the assumption that images are self-similar.

Requires tuning of the internal paramters (e.g. search window, patch size, scaling factor).

One would ideally like to use

$$W_{(i,j),(k,l)}(u) = \exp\left(-\sum_{r=-s}^{s}\sum_{t=-s}^{s}(u_{i+r,j+t}-u_{k+r,l+t})^2/h\right)$$

in the optimization for u. Such problems would be extremely difficult to optimize. Using u = f instead assumes that the data is "good enough" to get reliable estimates.

Linear inverse imaging problems

Michael Moeller

Visual Scene

Denoising TV regularization

MAP estimates Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Summary Denoising

We have seen several ways to formulate image denoising as

$$\hat{u} = \underset{u}{\operatorname{argmin}} H_f(u) + \alpha R(u)$$

The data fidelity term H_f relates the solution u to the measured data f. We can adapt it to the expected type of noise using MAP estimates.

We have learned about several types of regularizations

- 1 Local quadratic ℓ^2 regularization, $\|\nabla u\|^2$.
- 2 TV regularization, e.g. $\|\nabla u\|_{2,1}$.
- 3 Nonlocal quadratic regularization, $\|\nabla_w u\|^2$.
- 4 Nonlocal TV regularization, e.g. $\|\nabla_w u\|_{2,1}$.

Great thing about variational methods: We will move on to another application, but you can keep using the same types of regularizations!

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates

Non-local regularization

Deblurring

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Image Deblurring

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising TV regularization

MAP estimates
Non-local regularization

_ ...

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

nage formation

Inpainting

Dictionary learning Exemplar based techniques

Removing blurs from images

An *image blur* is a (subjective) describtion of an image not being sharp / looking unnatural.

Gaussian blur (\rightarrow out of focus)

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Removing blurs from images

An *image blur* is a (subjective) describtion of an image not being sharp / looking unnatural.

Motion blur

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Removing blurs from images

An image blur is a (subjective) describtion of an image not being sharp / looking unnatural.

Different motion blur

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Zoomina

Downsampling operator Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Image sharpening using linear filters

We already learned about one simple technique to sharpen an image.

$$\hat{u} = (I - \alpha \Delta)f$$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurrina

Zooming

Downsampling operator

Demosaicking

_

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Image sharpening using linear filters

We already learned about one simple technique to sharpen an image.

$$\hat{u} = (I - \alpha \Delta)f$$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Jonvex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Exemplar based techniques

X-ray reconstruction

Image sharpening using linear filters

We already learned about one simple technique to sharpen an image.

$$\hat{u} = (I - \alpha \Delta)f$$

Problems:

- · Works for small undirected blurs only.
- · Heavily amplifies noise.
- Neglects information we possibly have about the blur.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Ophlurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Modelling blurs

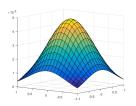
How can we model a blur?

Most common: Convolution

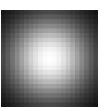
Cont.:
$$(k * u)(x_1, x_2) = \int_{\Omega} k(y_1, y_2) u(x_1 - y_1, x_2 - y_2) dy_1 dy_2$$

Disc.:
$$(k * u)(i,j) = \sum_{s,t} k(s,t) u(i-s,j-t),$$

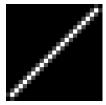
where k is called convolution kernel in the discrete and continuous setting and sometimes mask in the discrete. Common assumption in practice: k has finite support



Truncated Gaussian



Truncated Gaussian



Motion blur kernel

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates Non-local regularization

Zoomina Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Convolutions

Discrete convolutions are a local weighted average in a neighborhood or window around each pixel:

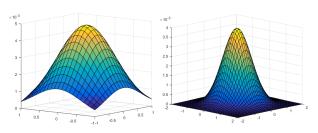
Disc.:
$$(k * u)(i,j) = \sum_{s=-h}^{h} \sum_{t=-w}^{w} k(s,t) u(i-s,j-t)$$

Here $(2h+1) \times (2w+1)$ window.

Illustration on

https://en.wikipedia.org/wiki/Convolution

Save computations by truncating the support



Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

bebluiring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

Convolutions

We have already worked with discrete convolutions!

The convolution with

yields an approximation to the x-derivative. The transpose kernel yields a y-derivative.

The convolution with

1/ <i>h</i> ² ·	0	1	0
	1	-4	1
	0	1	0

yields an approximation to the Laplace operator.

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates
Non-local regularization

Date of the

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Deblurring becomes Deconvolution!

Back to the problem of how to remove the blur from images under a particular assumption on the data formation process:

$$f = k * u_{true} + noise$$

Again, we can compute the MAP estimate and find - for example under the assumption that the noise is Gaussian - we use

$$\frac{1}{2}||k*u-f||^2$$

as a data fidelity term.

Remember from linear algebra: The application of any linear operator in finite dimension (such as k * u) can be represented as a matrix vector multiplication.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

_

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Writing the convolution as a matrix multiplication

We already learned one way of obtaining a matrix vector representation: For separable kernels, $k(x, y) = k_1(x)k_2(y)$, we can find matrices K_x and K_y such that

$$k * u = K_y u K_x$$

and find

$$\operatorname{vec}(k * u) = \operatorname{kron}(K_x^T, K_y)\operatorname{vec}(u).$$

→ Small code demonstration.

Easy alternative (with zero boundary conditions and a larger convolution result): MATLAB's *convmtx2*.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurrina

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Minimizing the data term only?

After we have written the convolution as a vector matrix multiplication, we just aim at solving a linear system approximately:

$$Ku \approx f$$
 or $||Ku - f||^2$ small.

What happens if we do gradient descent on the data term?

Input data (iteration 0)

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Convex relaxation

Image formation

Inpainting Dictionary learning

Exemplar based techniques

Minimizing the data term only?

After we have written the convolution as a vector matrix multiplication, we just aim at solving a linear system approximately:

$$Ku \approx f$$
 or $||Ku - f||^2$ small.

What happens if we do gradient descent on the data term?

Iteration 40

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting Dictionary learning

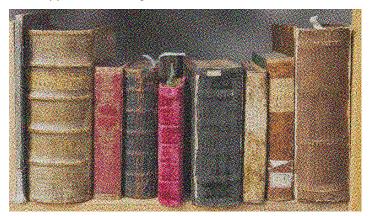
Exemplar based techniques

Minimizing the data term only?

After we have written the convolution as a vector matrix multiplication, we just aim at solving a linear system approximately:

$$Ku \approx f$$
 or $||Ku - f||^2$ small.

What happens if we do gradient descent on the data term?



Iteration 2000

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

III-posed inverse problem

One can show:

Theorem: Operators with Hilbert-Schmidt kernel are compact

Let

$$Au(x) = \int_{\Omega} k(x, y)u(y) \ dy$$

with kernel $k \in L^2(\Omega \times \Omega)$. Then $A \in \mathcal{L}(L^2(\Omega), L^2(\Omega))$ is compact.

For any compact linear operator A with infinite dimensional

range, the Moore-Penrose pseudoinverse A^{\dagger} is not continuous! Conclusion: **Deconvolution is an ill-posed problem!**

All kinds of regularization we developed for image

denoising can immediately be put in use!

$$\hat{u} = \min_{u} \frac{1}{2} ||Ku - f||^2 + \alpha R(u),$$

e.g. for $R = \frac{1}{2} \|\nabla u\|^2$, $R = \|\nabla u\|_{2,1}$, or nonlocal regularizations such as $R = \langle u, Lu \rangle$ for the graph Laplacian L.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising
TV regularization
MAP estimates
Non-local regularization

Zooming
Downsampling operator

Demosaicking

Convex relaxation
Image formation

ge formation

Inpainting
Dictionary learning

Exemplar based techniques

X-ray reconstruction

Implementation of Deblurring

TRY IT:

- We discussed how to generate K
- You know how to generate $L = I D^{-1/2}WD^{-1/2}$
- You have code to generate W.
- You have code for computing (approximations to) $R(u) = \|\nabla u\|_{2,1}$, and $\nabla R(u)$.

Your task on the next exercise sheet: Implement it!

Any questions about deblurring and it's implementation?

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Zooming

Downsampling operator

Demosaicking

Convex relaxation

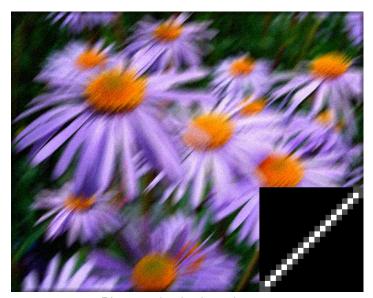
Image formation

Inpainting

Dictionary learning Exemplar based techniques

An Example

Removing a known motion blur



Blurry and noisy input image

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

eblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

An Example

Removing a known motion blur

Straight forward TV regularized reconstruction

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Some remarks

Interesting recent variant for the data term: Also compare the local or nonlocal gradients in the data term, i.e. use

$$\frac{1}{2}\langle Ku-f, (I-\beta L)Ku-f)\rangle$$

for L being the (possibly nonlocal) Laplace operator.

There are methods trying to also estimate the noise standard variation to adapt the regularization parameter α in

$$\min_{u} H_f(u) + \alpha R(u)$$

Nonlocal regularization methods sometimes iteratively adapt the similarity matrix W, see e.g. Kheradmand and Milanfar, Ageneral framework for regularized, similarity-based image restoration, 2014.

We considered the case where the blur operator K is known. Jointly estimating K and u is called **blind deconvolution** and will be discussed later.

Linear inverse imaging problems

Michael Moeller

Denoising
TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

An Example

Removing a Gaussian blur - Kheradmand and Milanfar Code

Blurry and noisy input image

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates
Non-local regularization

Deblurring

Journing

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

An Example

Removing a Gaussian blur - Kheradmand and Milanfar Code

Nonlocal reconstruction

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates
Non-local regularization

Deblurring

Deblurning

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Punchline

Whenever we know the (linear) data formation process, we can use our known regularizations *R* to solve a variational problem of the form

$$\frac{1}{2}\|Au-f\|^2+\alpha R(u)$$

for application-dependent linear operators A!

Based on the type of noise we expect, we can adapt the norm for the data fidelity term.

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates
Non-local regularization

Deblurring

Debiuiting

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting
Dictionary learning

Exemplar based techniques

X-ray reconstruction

https://www.youtube.com/watch?v=LhF_56SxrGk

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zoon

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Consider our favorite image

Original books image

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting Dictionary learning

Exemplar based techniques

But we observed only a low resolution version

How do we go back to a high resolution version?

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Repeating pixel values

Nearest Neighbors interpolation

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zoomii

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning
Exemplar based techniques

X-ray reconstruction

High order interpolation

Bicubic upsampling

Linear inverse imaging problems

Michael Moeller

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Denoising

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

zvompiai basoa toomiquot

Respecting the assumed data formation process

Variational method

Linear inverse imaging problems

Michael Moeller

Denoising TV regulariz

TV regularization MAP estimates

Non-local regularization

Deblurring

Zoomi

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

As soon as we understand the forward model, obtaining the results on the previous slide is easy!

Forward model = Given the high resolution version, how would you create a low resolution version?

Steps:

- Blur the high resolution image (to avoid aliasing)
- 2 Average the values of the high resolution pixels to obtain the low resolutino pixel value.

Define A = D B for a blur operator B and a downsampling operator D and solve

$$\frac{1}{2}\|Au-f\|^2+\alpha R(u)$$

→ Variational methods are awesome!!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zoomi

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

The downsampling operator

How would you model a downsampling operator?

Example: Subsampling by a factor of 2:

Low resolution pixel

High	High
res.	res.
pixel	pixel
High	High
res.	res.
pixel	pixel

Each low resolution pixel should be the mean of the corresponding high resolution pixels.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

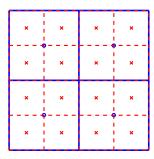
Image formation

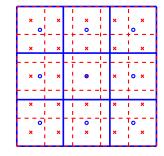
Inpainting

Dictionary learning Exemplar based techniques

The downsampling operator

Making things more complicated:





Interpolation 4×4 to 2×2

Interpolation 5×5 to 3×3

Possible approach to generate a forward model: The values at the blue (low resolution) pixels originate from the red (high resolution) pixels via a bilinear interpolation. Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

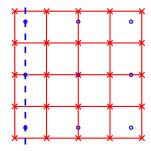
Dictionary learning Exemplar based techniques

Reminder: Bilinear interpolation

Explain bilinear interpolation on the board.

We always represent images on a uniform grid.

 \rightarrow The *x*-interpolation is the same for each row of of the image!



 \rightarrow We can write the *x*-interpolation as uS_x for u being the image in matrix form, and S_x being a suitable interpolation matrix.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising
TV regularization
MAP estimates

MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Determining the bilinear interpolation matrix

Board: How to determine each row of the matrix S_x separately.

Example code (not efficient but illustrates how the matrix representation of any linear could be obtained):

Do the same for the y interpolation matrix S_y with rows instead of columns and get the final matrix via

```
D = kron(Sx', Sy);
```

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising
TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Final remarks

The problem

$$\hat{u} \in \underset{u}{\operatorname{argmin}} \frac{1}{2} \|DBu - f\|^2 + \alpha R(u)$$

can be solved as usual, i.e.

- Solve a linear system (e.g. with pcg in MATLAB) if R is quadratic.
- 2 Use our line search gradient descent algorithm if R contains a (smoothed) ℓ^1 type norm.

Keep in mind: in many cases (e.g. upsampling by an integer factor) generating *D* in matrix form is highly inefficient!! It is just a tool for us to have a linear operator that is easy to deal with and to show that many problems are structurally the same!!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting
Dictionary learning

Exemplar based techniques

Image Demosaicking

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

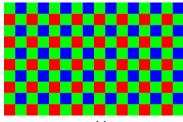
lage lormation

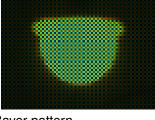
Inpainting
Dictionary learning

Exemplar based techniques

Image demosaicking

Color filter arrays (CFAs): The way a camera records colors





Most common: Bayer pattern

Forward model:

$$Au(x) = \begin{cases} u(x) & \text{if color known,} \\ 0 & \text{if color not known.} \end{cases}$$

Inpainting problem:

$$u(\alpha) = \arg\min_{u} \frac{1}{2} ||A(u - f)||_2^2 + \alpha R(u)$$

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising TV regularization

MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting
Dictionary learning

Exemplar based techniques

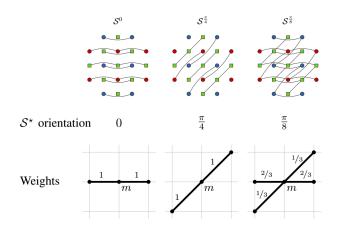
X-ray reconstruction

Image demosaicking

Consideration on the board: Separate channel TV regularization leaves the problem underdetermined!

Nonlocal methods are difficult to apply.

Example for a variational demosaicking approach: Pascal Getreuer, *Color Demosaicing with Contour Stencils*, 2011.



Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting Dictionary learning

Exemplar based techniques

X-ray reconstruction

Image demosaicking

Strategy:

- Determine the best fitting stencil at each pixel.
- Assign weights for connecting the differences of pixel values at each location.
- Smooth weights and make them symmetric → w_{i,j}.
- · Compute directed total variation minimizing solution, i.e.

$$\min_{u} R(u) = \sum_{i} \sqrt{\sum_{j} w_{i,j} (u_i - u_j)^2} \quad \text{s.t. } Au = Af$$

or a denoising-based alternative

$$u(\alpha) = \arg\min_{u} \frac{1}{2} ||A(u-f)||_{2}^{2} + \alpha R(u)$$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

An alternative regularization?

What are contour stencils trying to do?

From a modeling perspective they argue we should EITHER smooth horizontally OR vertically OR diagonally at each pixel. Which direction to use is determined beforehand.

This raises a quite general question: How do I model logical combinations of regularization terms?

Easy: R_1 AND R_2 should be small:

$$R(u) = R_1(u) + R_2(u)$$

Difficult: R_1 OR R_2 should be small. Possible modeling

$$R(u) = \min(R_1(u), R_2(u))$$

is highly nonconvex!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Minimum of two regularizations

Possible ways to handle

$$R(u) = \min(R_1(u), R_2(u))$$
 (1)

1 Determine weights w_1 , w_2 from the input data and use

$$w_1 R_1(u) + w_2 R_2(u)$$

Drawback: Two-step procedure. Fails if estimation of weights fails. Possibly not robust to noise. Requires data to allow the estimation of weights.

- 2 Iterative reweighting procedures: Iterate between determining a solution u^k and determining new weights $w_1^k R_1(u) + w_2^k R_2(u)$. Drawback similar to the above. Final result depends on initialization.
- **3 Convex relaxation:** Try to find a convex function that approximates (1).

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

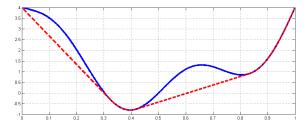
Image formation

Inpainting
Dictionary learning

Exemplar based techniques

Convex relaxation

Common strategy for convex approximations: Find the largest lower semi-continuous (lsc) convex function conv(E) that underestimates the energy E.Nice property:



A global minimizer of E is a global minimizer of conv(E)!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Convex relaxation

But how can we compute conv(E)?

Definition: Convex Conjugate

Let $E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be an arbitrary energy function. We call

$$E^*(p) = \sup_{u} \langle u, p \rangle - E(u)$$

the convex conjugate of E.

Biconjugate

The *biconjugate* E^{**} is the largest lsc convex underapproximation of E.

How can we understand this in more detail?

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Convex conjugates

Properties of the conjugates

It holds that

- \bullet ... the convex conjugate E^* of any function E is convex.
- 2 ... $E^{**}(u) \leq E(u)$ for all u.
- 3 ... $E^{**} = E$ if E is convex and lsc.

Proofs: 1) + 2) in the exercise, 3) only partially, i.e. $E^{**}(u) = E(u)$ for E being differentiable at u, on the board.

Now we can easily argue why E^{**} is the largest convex, lsc underapproximation of E.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Convex conjugates rules

What helps us for computing convex conjugates?

Scalar multiplication :

$$E(u) = \alpha \tilde{E}(u) \Rightarrow E^*(p) = \alpha \tilde{E}^*(p/\alpha)$$

· Separable sum:

$$E(u_1,u_2) = E_1(u_1) + E_2(u_2) \ \Rightarrow \ E^*(p_1,p_2) = E_1^*(p_1) + E_2^*(p_2)$$

• Translation:

$$E(u) = \tilde{E}(u-b) \Rightarrow E^*(p) = \tilde{E}^*(p) + \langle p, b \rangle$$

Additional affine functions:

$$E(u) = \tilde{E}(u) + \langle b, u \rangle + a \Rightarrow E^*(p) = \tilde{E}^*(p-b) - a$$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Fenchel-Rockafellar duality

One of the most central theorems in the field of convex conjugation is

Fenchel-Rockafellar duality theorem

Let $R_1: \mathbb{R}^n \to \mathbb{R}$ and $R_2: \mathbb{R}^m \to \mathbb{R}$ be convex, and $A: \mathbb{R}^{m \times n}$ a matrix. Then

$$\inf_{u} R_{1}(u) + R_{2}(Au) = -\inf_{\rho} R_{1}^{*}(-A^{T}\rho) + R_{2}^{*}(\rho).$$

We will exploit (a generalized version of) this theorem heavily in next semester's lecture on convex optimization. For now, consider it as a tool to determine convex conjugates of sums.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zoomina Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Convex conjugates

This is a nice theory (of which we only discussed a tiny, tiny fraction. How do put this into application? What about our $min(R_1, R_2)$ problem?

You will use everything we discussed to show in the exercises:

Biconjugate of minimum of one-homogeneous functions

Let $R_1 : \mathbb{R}^n \to \mathbb{R}$ and $R_2 : \mathbb{R}^n \to \mathbb{R}$ be convex and absolutely one-homogeneous, i.e.

$$R_1(\alpha u) = |\alpha| R_1(u) \quad \forall \alpha, u.$$

Then the biconjugate of

$$E(u) = \min(R_1(u), R_2(u))$$

is the infimal convolution

$$E^{**}(u) = \inf_{w} R_1(u-w) + R_2(w)$$

between R_1 and R_2 .

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising
TV regularization
MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

A toy example for image demosaicking

Let us put everything into use. Assume we believe that a good regularization for demosaicking penalizes either mostly the x-derivative, or mostly the y-derivative.

We define

$$\begin{split} R_1(u) &= \int_{\Omega} \sqrt{(0.25 + \partial_{x_1} u(x))^2 + (\partial_{x_2} u(x))^2} \ dx, \\ R_2(u) &= \int_{\Omega} \sqrt{(\partial_{x_1} u(x))^2 + (0.25 + \partial_{x_2} u(x))^2} \ dx. \end{split}$$

Then we use the the *infimal-convolution* of R_1 and R_2 as a regularization, i.e.

$$R(u) = \min_{w} R_1(u-w) + R_2(w)$$

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

xemplar based techniques

A toy example for image demosaicking

Complete demosaicking problem

$$\min_{u,w} \frac{1}{2} ||Au - f||_2^2 + R_1(u - w) + R_2(w).$$

Algorithmically, we solve for u and w simultaneously! After smoothing R_1 and R_2 , we can still apply the same gradient descent method that we always used!

Discuss such an implementation on the board. This will be your next task!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Debiumni

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Summary

For modeling a convex regularization function that behaves somewhat similar to the minimum of two convex one-homogeneous functions one can use the infimal-convolution

$$(H\square R)(u)=\inf_{w}H(u-w)+R(w).$$

We briefly introduced the idea of the convex conjugate E^* of E as

$$E^*(p) = \sup_{p} \langle p, u \rangle - E(u),$$

and learned about some computational rules.

We found the biconjugate E^{**} to be the largest convex lsc underapproximation of E.

A whole branch of research investigates the question of how to find good convex approximations to nonconvex cost functions.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising TV regularization

MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

.....

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Small Excursion: Image formation process!

We have talked about noise levels and considered data fidelity terms like

$$\frac{1}{2}||Au - f||_2^2$$
 or $||Au - f||_1$,

but how does it look in practice?

Following information based on code of publication: Andriani et al., Beyond the Kodak Image Set: A New Reference Set of Color Image Sequences, 2013.

ftp://imageset@ftp.arri.de, password: imageset.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

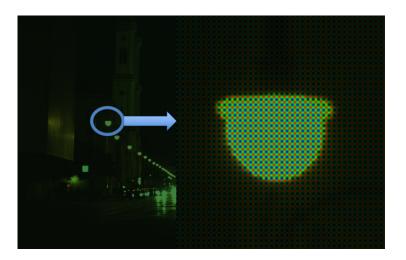
Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques



Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

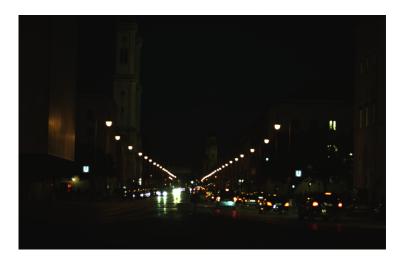
Convex relaxation

nage formation

Inpainting

Dictionary learning

Exemplar based techniques



Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

mage formation

Inpainting Dictionary learning

Exemplar based techniques

Human visual system: Linear changes in light intensity do not correspond to a linear change in brightness!

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

mage formation

Inpainting

Inpainting
Dictionary learning

Exemplar based techniques

X-ray reconstruction

updated 22.12.2016

Human visual system: Linear changes in light intensity do not correspond to a linear change in brightness!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking
Convex relaxation

onvex relaxation

nage formation

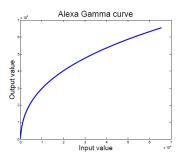
Inpainting Dictionary learning

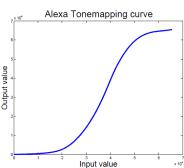
Exemplar based techniques

X-ray reconstruction

x ray reconstruction

Human visual system: contrasts are stronger for medium intensities





Human visual system: Much more sensitive to dark values Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

nage formation

Inpainting

Dictionary learning Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

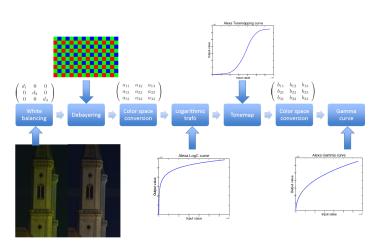
Demosaicking

Convex relaxation

mage formation

Inpainting

Dictionary learning Exemplar based techniques



Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

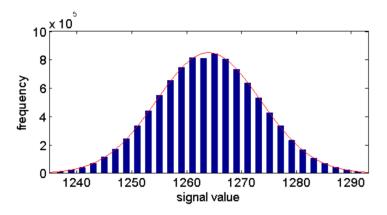
Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques



From:. Seybold et al. *Towards an Evaluation of Denoising Algorithms with Respect to Realistic Camera Noise*, 2013.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

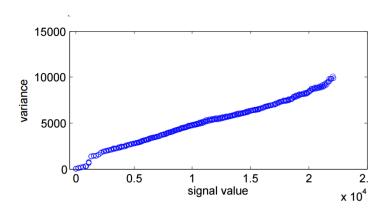
Convex relaxation

onvex relaxation

age formation

Inpainting

Dictionary learning Exemplar based techniques



From: Seybold et al. *Towards an Evaluation of Denoising Algorithms with Respect to Realistic Camera Noise*, 2013.

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

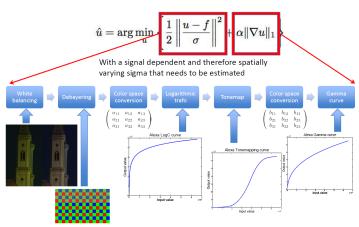
Convex relaxation

JOHNEX TERAXALI

nage formation

Inpainting
Dictionary learning

Exemplar based techniques



The theory of MAP estimates does provide a reasonable data fidelity term, but usual priors are developed on "monitor images". Open question: Best way to deal with this? ⁴

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

mage formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

updated 22.12.2016

⁴Also see Khashabi et al., *Joint Demosaicing and Denoising via Learned Non-parametric Random Fields*, 2013.

Small summary

As as soon as we have a (linear) forward model $f = A\hat{u}$ we immediately know how to formulate a variation method that tries to recover \hat{u} , via

$$\underset{u}{\operatorname{argmin}} H(Au - f) + \alpha R(u).$$

The data fidelity term can be motivated via MAP estimates.

Excursion: In practice the right MAP estimate is often difficult to obtain.

Some (heuristic) robust cost function (such as ℓ^1) is a decent choice for many applications.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Debiuitini

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Image Inpainting

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

painting

Dictionary learning Exemplar based techniques

Exemplai based techniques

General inpainting and image restoration

We have seen: By choosing the linear operator A in

$$\underset{u}{\operatorname{argmin}} H(Au - f) + \alpha R(u)$$

to "switch off" the data term locally, we can model demosaicking.

Natural question: Can we switch off different/larger parts and fill them with our regularization?

Simply use

$$(Au)_i = \begin{cases} u_i & \text{if } i \in I \\ 0 & \text{else.} \end{cases}$$

for an index set *I* of our choice!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Let us choose *I* to be a certain percentage of random pixels.

First observation: Nonlocal methods or variants like contour stencils be very difficult to use. Unclear how to compute weights!

Regularizations like the total variation are straight forward. Let's try it!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

npainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

Original image

Linear inverse imaging problems

Michael Moeller

Denoising
TV regularization
MAP estimates

MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

npainting

Dictionary learning Exemplar based techniques

50% of the pixels missing

Linear inverse imaging problems

Michael Moeller

Denoising
TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Convex relaxation

Image formation

npainting

Dictionary learning Exemplar based techniques

50% of the pixels inpainted

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Dictionary learning Exemplar based techniques

70% of the pixels missing

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

painting

Dictionary learning Exemplar based techniques

zverripiai baseu techniques

70% of the pixels inpainted

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Dictionary learning Exemplar based techniques

90% of the pixels missing

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator Demosaicking

Convex relaxation

Image formation

Dictionary learning Exemplar based techniques

90% of the pixels inpainted

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates Non-local regularization

on-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

painting

Dictionary learning Exemplar based techniques

Research in this direction (but not with fully random pixels): Image compression. See e.g. Mainberger, Weickert, *Edge-based image compression with homogeneous diffusion.* as an example.

Very interesting for image editing: Region inpaining.

We will discuss two examples: Inpainting with and without additional information.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

painting

Dictionary learning

Exemplar based techniques

How do we get the shark into the pool?

Assume we have the contours (e.g. user given).

Straight forward: Copy and paste.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Coldining

Zoomina

200ming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

painting

Dictionary learning Exemplar based techniques

Looks strange – colors and lighting do not match.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Dictionary learning Exemplar based techniques

Better – Blending using Poisson editing

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

npainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

A lay reconstruction

Poisson editing (Perez, Gangnet, Blake, 2004): Determine fusion by matching gradients.

Local, quadratic inpainting without additional information:

$$\min_{u} \|\nabla u\|_{2}^{2} \quad \text{such that } u(x) = f(x) \ \forall x \notin M$$

where M is the inpainting domain. Local, quadratic inpainting without additional information:

$$\min_{u} \|\nabla u - \nabla g\|_{2}^{2} \quad \text{such that } u(x) = f(x) \ \forall x \notin M$$

where M is the inpainting domain.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

npainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

updated 22.12.2016

Further remarks

- Instead of using ∇g directly, design the gradient map, e.g. $\alpha \nabla g + \beta \nabla f$, or $\max(\nabla f(x), \nabla g(x))$.
- Smooth the mask and use linear blending at the boundaries:

```
smoothMask = imfilter(mask, ones(c)/c^2);
blended = smoothMask.*img1+(1-smoothMask).*img2;
```

 Improvements e.g. "Linear Osmosis Models for Visual Computing" Weickert et al., 2013. Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

TV regularization

MAP estimates

Non-local regularization

Deblurring

_ .

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

npainting

Dictionary learning Exemplar based techniques

Inpainting based on self-similarity

Can we free the lion without any additional information?

We turn back to our standard inverse problem formulation:

$$\min_{u} \frac{1}{2} ||Au - f||_{2}^{2} + \alpha R(u)$$
with $Au(x) = \begin{cases} u(x) & \text{if color known,} \\ 0 & \text{if color not known.} \end{cases}$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpaintin

Dictionary learning Exemplar based techniques

Inpainting based on self-similarity

Linear inverse imaging problems

Michael Moeller

Denoising TV regulariza

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Inpainting based on self-similarity

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

npainting

Dictionary learning Exemplar based techniques

Higher order inpainting

It works but cannot reconstruct any texture. Thus it looks unrealistic.

Improvements can be made by considering higher order methods such as Masnoi, Morel, *Level-lines based disocclusion*,

$$\min_{u} \int_{M} |\nabla u| \left(\alpha + \beta |\kappa(u)|^{p}\right) dx,$$

where $\kappa(u) = \operatorname{div}(\frac{\nabla u}{|\nabla u|})$ is the curvature of the level lines, α , β , and p are parameters, and M is the inpainting domain.

Also see Sapiro, Bertalimio, Casseles, Ballester, *Image Inpaining* for an interesting PDE based approach, and follow up papers for further discussions.

Improvements can further be obtained by incorporating prior patch-based information. We will discuss two approaches - one trying to adapt non-local regularization to inpainting, and one general new regularization based on dictionary learning.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

painting

Dictionary learning Exemplar based techniques

X-ray reconstruction

updated 22.12.2016

Regularization via dictionary learning

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

updated 22.12.2016

Self-similarity revisited

We already learned about non-local means and non-local regularization, which exploid the fact that for each patch in the image there exist several similar patches.

With 90% of the pixels missing it is difficult to identify similar patches. For arbitrary linear operators A in

$$||Au - f||_2^2$$

it is unclear how to apply non-local methods.

Idea: Use training data to generate a **dictionary** of patches to compare to!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Sparse representation

Maintaining a dictionary that contains similar patches for all possible images a person could ever record / try to reconstruct would be too large.

Modeling assumption: One can learn a dictionary $D \in \mathbb{R}^{n \times N}$, N >> n, such that an arbitrary patch $p \in \mathbb{R}^n$ in a natural image can be represented as a sparse linear combination of atoms of D:

$$p = D\alpha$$
, $|\alpha|_0$ small,

where the ℓ^0 "norm" $|\alpha|_0$ (which is not a norm) is the number of nonzero entries in α .

Very common and powerful assumption even for designed dictionaries such as wavelets or DCT transform and for instance used in image compression.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP actimates Non-local regularization

Deblurring

Zoomina Downsampling operator

Demosaicking

Convex relaxation

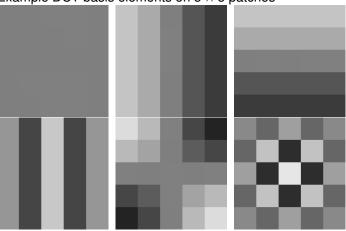
Image formation

Inpainting

Dictionary learning Exemplar based techniques

DCT compressibility

Example DCT basis elements on 5×5 patches



Patchwise representation of the image already yields decent sparse representation! \rightarrow code example!

By *learning* an *overcomplete* basis, we can expect to get significantly sparser representations.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

TV regularization

MAP estimates

Non-local regularization

Deblurring

Denoising

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Inpainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

updated 22.12.2016

Original image - 98% nonzero DCT coefficients

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

18% nonzero DCT coefficients

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting
Dictionary learning

Exemplar based techniques

X-ray reconstruction

6.2% nonzero DCT coefficients

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

4.7% nonzero DCT coefficients

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

onvex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

Sparse coding

Assume we are given a number of natural images and extracted a large number of M patches, which - when stacked as a vector - have size n. We form a matrix $Y \in \mathbb{R}^{n \times M}$ which is our **training data**.

Formalizing our problem: Find a dictionary $D \in \mathbb{R}^{n \times N}$ and sparse coefficients $X \in \mathbb{R}^{N \times M}$ via

$$\min_{X,D} \|Y - DX\|_F^2 \qquad \text{ s.t. } |X_{:,i}|_0 \le s \quad \forall i,$$

where the Frobinius norm of a matrix A is $||A||_F = (\sum_{i,j} (A_{i,j})^2)^{1/2}$.

This problem is nonconvex, nonsmooth, and the solution is not unique. How can we deal with these difficulties?

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Sparse coding

First common option: Biconvex relaxation. The convex envelope of the ℓ^0 norm with a box constraint is the ℓ^1 norm with a box constraint.

Researchers commonly consider the minimization of

$$E(X, D) := \|Y - DX\|_F^2 + \beta \|X\|_1.$$

The above energy *E* is *biconvex*, i.e. *E* is convex in each argument if the other argument is fixed.

A common strategy for biconvex energies is to use *alternating minimization*:

$$X^{k+1} = \underset{X}{\operatorname{argmin}} E(X, D^k)$$

 $D^{k+1} = \underset{D}{\operatorname{argmin}} E(X^{k+1}, D)$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Depluming

Zooming Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Sparse coding

Remaining problems in

$$\begin{split} X^{k+1} &= \underset{X}{\operatorname{argmin}} \, \| \, Y - D^k X \|_F^2 + \beta \| X \|_1, \\ D^{k+1} &= \underset{D}{\operatorname{argmin}} \, \| \, Y - D X^{k+1} \|_F^2. \end{split}$$

The magnitude of the coefficients gets penalized, the magnitude of the dictionary is unconstrained. One can expect $||X||_F \to 0$, and $||D||_F \to \infty$.

Common strategy: Insert a normalization

$$D_{:,i} = \frac{D_{:,i}}{\|D_{:,i}\|_2} \qquad \forall i$$

Convergence becomes unclear. Moreover, the update for *D* is

after each iteration.

 $0 = (Y - D^{k+1}X^{k+1})(X^{k+1})^T \Rightarrow D^{k+1} = Y(X^{k+1})^T (X^{k+1}(X^{k+1})^T)^{-1}$

Depending on the size of X, this can be expensive.

Linear inverse imaging problems Michael Moeller

Visual Scene

Denoising TV regularization MAP estimates Non-local regularization

Deblurring Zoomina Downsampling operator

Demosaicking Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

$$\min_{X,D} \|Y - DX\|_F^2 \qquad \text{ s.t. } |X_{:,i}|_0 \leq s \quad \forall i,$$

directly. Convenient to still use an alternating strategy.

Step 1: For a fixed dictionary D^k use a greedy algorithm to find a good column wise *s*-sparse coefficient matrix X.

Most common: Orthogonal matching pursuit (OMP). ⁵ Iteratively increase the support of the solution based on the question which dictionary atom is best suited for decreasing the residual.

First note that the minimization in *X* decouples column-wise:

$$||Y - DX||_F^2 = \sum_i ||Y_{:,i} - DX_{:,i}||_2^2.$$

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning
Exemplar based techniques

X-ray reconstruction

⁵See "Orthogonal least squares methods and their application to non-linear system identification", 1989, or "Orthogonal Matching Pursuit: recursive function approximation with application to wavelet decomposition", 1993.

OMP

Since the problem decouples we only need to understand how to approximately solve

$$\min_{x} \|y - Dx\|_2^2 \qquad \text{s.t. } |x|_0 \le s$$

OMP algorithm: Assume $||D_{:,i}||_2 = 1$ for all i.

Initialize $r^0 = v$, $x^0 = 0$, $I^0 = \emptyset$ and repeat s times

1 Determine $I^k = I^{k-1} \cup \{i\}$ for an index i for which

$$|D_{:,i}^T r^{k-1}| = ||D^T r^{k-1}||_{\infty}.$$

2 Compute coefficents

$$x^k = P_{I^k} \operatorname*{argmin}_{x} \|DP_{I^k}x - y\|^2,$$

where P_{lk} is the projection onto the support set l^k .

3 Update the residuum

$$r^k = y - Dx^k$$
.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Some remarks:

 The index that is added in each iteration is the one that would be nonzero when solving

$$||Dx - r^{k-1}||_2^2$$
 s.t. $|x|_0 = 1$.

- For a given support set, the coefficients x^k are the optimal ones.
- The OMP algorithm will not solve the nonconvex sparse recovery problem exactly in general. The latter is an NP-hard problem.
- There exist interesting theoretical studies in which case the OMP algorithm actually solves the nonconvex problem, see for instance J. Tropp, "Greed is Good: Algorithmic Results for. Sparse Approximation", 2003.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

X-ray reconstruction

Sparse representation

Back to our problem to tackle

$$\min_{X,D} \|Y - DX\|_F^2 \qquad \text{s.t. } |X_{:,i}|_0 \le s \quad \forall i,$$

directly.

We already identified a possible step 1: For a fixed dictionary D^k use the OMP algorithm to find a good column wise s-sparse coefficient matrix X.

Step 2: Jointly update the dictionary and coefficients using rank-1 updates by noting that one can write

$$DX = \sum_{i} D_{:,i} X_{i,:},$$

which is a sum of rank-1 matrices.

This strategy was proposed by Aharon, Elad, Bruckstein. "K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation", 2006. Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning
Exemplar based techniques

X-ray reconstruction

X-ray reconstruction

Rank-1 updates

Note that

$$\| \mathbf{Y} - \mathbf{D} \mathbf{X} \|_F^2 = \| \mathbf{Y} - \sum_i \mathbf{D}_{:,i} \mathbf{X}_{i,:} \|_F^2 = \| \mathbf{Y} - \sum_{i \neq j} \mathbf{D}_{:,i} \mathbf{X}_{i,:} - \mathbf{D}_{:,j} \mathbf{X}_{j,:} \|_F^2.$$

Idea of the algorithm: Define $E^j = Y - \sum_{i \neq j} D_{:,i} X_{i,:}$ and optimize for $D_{:,j}$ and $X_{j,:}$ in

$$\|E^j - D_{:,j}X_{j,:}\|_F^2$$

jointly.

Tempting: Find the best rank-1 approximation by using the SVD $E^j = U\Sigma V^T$, and assign $D_{:,j} = U_{:,1}$, $X_{j,:} = \lambda_1 V_{:,1}$.

Problem: The update $X_{j,:} = \lambda_1 V_{:,1}$ will destroy the sparsity pattern of $X_{j,:}$!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Exemplai based techniques

Sparse rank-1 updates

Back to updating $D_{:,j}$ and $X_{j,:}$ based on

$$\|E^{j}-D_{:,j}X_{j,:}\|_{F}^{2},$$
 (1)

under the constraint of not changing the sparsity pattern of $X_{j,:}$!

Define $l^j = \{i \mid X_{j,i} \neq 0\}$ and use the MATLAB notation X_{j,l^j} to denote the $1 \times |l^j|$ vector that consists only of those entries that are in l^j .

Replace (1) by

$$||E_{:,l^j}^j - D_{:,j}X_{j,l^j}||_F^2.$$

The restriction of $X_{j,!}$ to $X_{j,!}$ means that elements that were zero before are kept at zero.

The restriction of E^j to $E^j_{:,j}$ means that only those parts of the error E^j matter that were using the j-the dictionary item before.

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking
Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

Sparse rank-1 updates

Codebook Update: Given initial estimates of the dictionary *D* and the coefficient matrix *Y* proceed as follows:

For $j \in \{1, ..., N\}$, do

- **1** Determine $I^{j} = \{i \mid X_{i,i} \neq 0\}.$
- 2 Compute $E^j = Y \sum_{i \neq i} D_{:,i} X_{i,:}$
- **3** Compute the SVD of $E_{:,j}^{j} = U\Sigma V^{T}$.
- 4 Update

$$X_{j,l^k} \leftarrow \Sigma_{1,1} V_{:,1}$$
$$D_{:,j} \leftarrow U_{:,1}$$

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Jebiuiiiig

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

The complete K-SVD algorithm

Determine an initial dictionary D, e.g. by concatenating a DCT basis, a wavelet basis, and some random patches of the training set. Make sure *D* has normalized columns and iterate:

- 1 Run the **OMP algorithm** to find coefficients *X*
- 2 Run the **Codebook Update** to jointly update D and X

Variant for image denoising: Do not run OMP for a fixed

 σ is the noise-level.

Application to inverse problems in imaging:

$$\min_{u,D,X} \lambda \|Au - f\|_2^2 + \|Pu - DX\|_2^2 \qquad \text{s.t. } \|X_{:,i}\|_0 \le s \ \forall i,$$

number of iterations s, but rather until $||Dx - y||_2 < c(\sigma)$, where

where *P* is a linear operator extracting all (possibly overlapping) $\sqrt{n} \times \sqrt{n}$ patches from its input image.

Also see "Sparse Representation for Color Image Restoration" by Mairal, Elad, and Sapiro for extensions to color imaging.

Linear inverse imaging problems

Michael Moeller

Visual Scene A nalvsis

Denoising TV regularization MAP estimates Non-local regularization

Deblurring Zoomina

Downsampling operator Demosaicking

Convex relaxation Image formation

Inpainting

Dictionary learning

Exemplar based techniques X-ray reconstruction

Back to our general inpainting problem. What happens for even larger inpainting domains?

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

V -----

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

V -----

Inpainting based on self-similarity

Interesting approach from Arias et al., *A Variational Framework for Exemplar-Based Image Inpainting*, 2010. Among other suggestions: Extend Poisson image editing into a non-local variational framework.

$$\min_{u,m} \int_{M^c} \int_M m(x,y) (\nabla u(x) - \nabla f(y))^2 dx dy + R(m),$$

where m is a function containing the non-local weights, f is the input image, M is the inpainting domain, and M^c its complement.

Difficulty: Jointly minimizing for m (with $\int_{M^c} m(x,y) dy = 1$, $m(x,y) \ge 0$) and u.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Columning

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

Inpainting based on self-similarity

Many details to figure out to make it work:

- Determine weights patch-based ($m \leftrightarrow w$ in the paper)
- Introduce data fidelity weights that decrease with the distance to known regions.
- Restrict the number of non-zeros of *m*, e.g. in the extreme case, pick only one similar patch per unknown pixel.
- Use a coarse-to-fine scheme.

Go through the corresponding paper for details. First (non-variational) approach Criminisi et al., *Region filling and object removal by exemplar-based image inpainting*, 2004.

Show toy GUI for image (greedy) patch based inpainting from https://sourceforge.net/projects/imageinpainting/?source=typ_redirect.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

· ·

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

X-ray reconstruction

Tomographic X-ray reconstruction

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

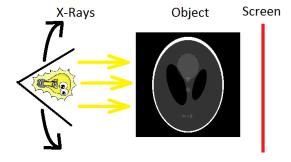
Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques



Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

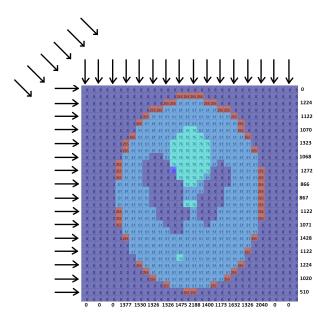
Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques X-ray reconstruction



Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

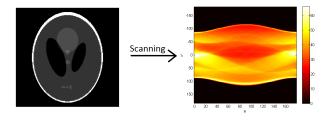
Demosaicking

Convex relaxation

Image formation

Inpainting
Dictionary learning

Exemplar based techniques



Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

What can we reconstruct and how?

The intensity *I* of an X-ray beam is weakened or *attenuated* depending on the material it travels trough.

The change of intensity is proportional to the intensity *I* itself, where the proportionality factor is called *attenuation coefficient*.

Since the material changes in space, so does the attenuation coefficient, such that we can describe it as a function $u: \mathbb{R}^2 \to \mathbb{R}$.

An X-ray which travels along a line

$$I(s,\alpha) = \{x \mid \langle \theta(\alpha), x \rangle = s\}$$

for $\theta(\alpha) = (\cos(\alpha), \sin(\alpha))^T$ changes its intensity to

$$I^d = \exp\left(-\int_{I(s,\alpha)} u(x) \ dx^\perp\right) I^0$$

where we assume u to be zero outside of our region of interest.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising
TV regularization
MAP estimates
Non-local regularization

Deblurring

Demosaicking

Zooming
Downsampling operator

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques

K-ray reconstruction

Radon transform

We define the *Radon transform* of a function $u: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ as

$$\mathcal{R}(u)(s,\alpha) = \int_{I(s,\alpha)} u(x) \, dx^{\perp}$$

$$= \int_{-\infty}^{\infty} u(s\theta(\alpha) + t\theta(\alpha)^{\perp}) \, dt$$

$$= \int_{-\infty}^{\infty} u(s\cos(\alpha) - t\sin(\alpha), s\sin(\alpha) + t\cos(\alpha)) \, dt$$

Based on our formula for the change of intensity of an X-ray, if we send out a ray with known intensity I^0 and measure its intensity I^d behind an object, we can determine

$$\log(I^0) - \log(I^d) = \mathcal{R}(u)(s, \alpha).$$

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning
Exemplar based techniques

X-ray reconstruction

Reconstruction: Find u from measurements $\mathcal{R}(u)(s,\alpha)$!

Radon transform

From the linearity of the integral, it immediately follows that taking the Radon transform \mathcal{R} is a linear operator!

Structurally, the reconstruction task does not differ from any of the previous examples!

In the continuous setting, there exists a closed-form inversion formula for reconstructing u from $\mathcal{R}(u)$ as you will prove in the exercise.

The standard reconstruction technique called filtered-backprojection is a modified version of the inversion formula to stabilize the reconstruction.

Different from the previous examples: The measured data is not image-like!

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates

Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

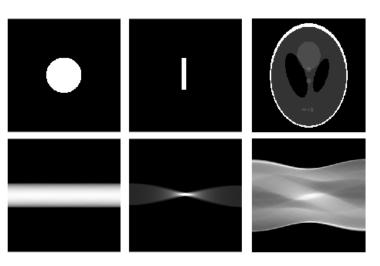
Inpainting

Dictionary learning

Exemplar based techniques

Radon transform

Some examples of images and their sinograms.



Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization MAP estimates Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Exemplar based techniques

Radon and Fourier transforms

The Radon transform is closely related to the Fourier transform. Remember that we call

$$\hat{u}(\xi) = \int_{\mathbb{R}^n} u(x) e^{-i\langle x, \xi \rangle} \ dx$$

the Fourier transformation of $u : \mathbb{R}^n \to \mathbb{R}$.

Central slice theorem

Let $u : \mathbb{R}^2 \to \mathbb{R}$ be an absolutely integrable function. For any $r \in \mathbb{R}$ and any $\alpha \in [0, \pi]$, it holds that

$$\int_{-\infty}^{\infty} \mathcal{R}(u)(s,\alpha) e^{-isr} ds = \hat{u}(r\theta(\alpha)),$$

where $\theta(\alpha) = (\cos(\alpha), \sin(\alpha))^T$. In words, the Fourier transformation of $h(\cdot) = \mathcal{R}(u)(\cdot, \alpha)$ at r is the Fourier transform of u evaluated at $r\theta(\alpha)$.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zoomina

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning Exemplar based techniques

Radon and Fourier transforms

To simplify our formulas let us introduce the notation

$$ilde{g}(r, heta) = \int_{-\infty}^{\infty} g(t, heta) e^{-irs} ds.$$

The previous theorem now reads as

$$\widetilde{\mathcal{R}(u)}(r,\alpha) = \hat{u}(r\theta(\alpha)).$$

Radon inversion formula

In the exercises you will prove that for $u: \mathbb{R}^2 \to \mathbb{R}$ with u and \hat{u} being absolutely integrable it holds that

$$u(x) = \frac{1}{(2\pi)^2} \int_0^{\pi} \int_{-\infty}^{\infty} \widetilde{\mathcal{R}(u)}(s,\alpha) |s| \ e^{is\langle x,\theta(\alpha)\rangle} \ ds \ d\alpha,$$

where $\theta(\alpha) = (\cos(\alpha), \sin(\alpha))^T$.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning
Exemplar based techniques

K-ray reconstruction

Filtered backprojection

The reconstruction formula is often interpreted as follows:

$$u(x) = \underbrace{\frac{1}{2\pi} \int_0^\pi \underbrace{\left(\frac{1}{2\pi} \int_{-\infty}^\infty \widetilde{\mathcal{R}(u)}(s,\alpha) |s| \ e^{is\langle x,\theta(\alpha)\rangle} \ ds\right)}_{=\mathcal{FR}(u)(\alpha), \ \text{filtering}} \ d\alpha}_{\text{backprojection}}$$

Since the inversion of the Radon transform is an ill-posed problem, one cannot use the analytic inversion formula directly, but uses different (damped) filters. Try *help iradon* in MATLAB for some examples.

The "filtering" comes from the multiplication with |s|! Without this multiplication we find

$$\mathcal{FR}(u)(\alpha) = \mathcal{R}(u)(s, \alpha).$$

Interestingly, this reduces the above operator to the operatoradjoint to the Radon transform, i.e., the unfiltered backprojection is the adjoint of the Radon transform.

Linear inverse imaging problems

Michael Moeller

Visual Scene Analysis

Denoising
TV regularization
MAP estimates

Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting
Dictionary learning

Exemplar based techniques

X-ray reconstruction

Discretization of the Radon transform

How can we implement the transform numerically?

Simplest way: Use a pixel grid and assume the absorption coefficient to be constant within each grid cell.

Remaining question: What is the corresponding approximation of the line integral for such a discretization?

Weighted sum over the pixels that the ray intersects with! The weights is the distance the ray travels in the pixel.

Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization

MAP estimates

Non-local regularization

Deblurring

Depluming

Zooming

Downsampling operator

Demosaicking

Convex relaxation

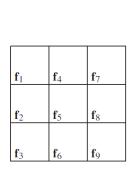
Image formation

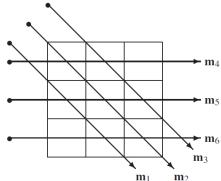
Inpainting

Dictionary learning Exemplar based techniques

Discretization of the Radon transform

From: Jenifer L. Mueller and Samuli Siltanen, "Linear and Nonlinear Inverse Problems with Practical Applications".





$$R = \begin{pmatrix} 0 & \sqrt{2} & 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 & \sqrt{2} & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Linear inverse imaging problems

Michael Moeller

Denoising TV regularization

MAP estimates Non-local regularization

Deblurring

Zoomina Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting Dictionary learning Exemplar based techniques

X-ray reconstruction

Computational considerations

Besides the Radon transform being an example in which the result $\mathcal{R}(u)$ of applying a linear operator does not yield an image anymore, it also yields an example in which it can quickly become too expensive to store a matrix representation of \mathcal{R} .

We therefore need fast methods to apply the Radon transform and its adjoint which are not based on a matrix representation of the operator \mathcal{R} .

We will practice dealing with such a situation in an inefficient but conceptually important way in MATLAB using function handles for radon and iradon in the exercises. Linear inverse imaging problems

Michael Moeller

Denoising

TV regularization
MAP estimates
Non-local regularization

Deblurring

Zooming

Downsampling operator

Demosaicking

Convex relaxation

Image formation

Inpainting

Dictionary learning

Exemplar based techniques