Organization and Introduction

Michael Moeller

Visual Scene Analysis

Organizational Things

What will we do?

Chapter 0 Organization and Introduction

Numerical Methods for Visual Computing WS 17/18

Michael Moeller Visual Scene Analysis Department of Computer Science and Electrical Engineering University of Siegen

Organization and Introduction

Michael Moeller

Visual Scene Analysis

Organizational Thing

What will we do?

Organizational Stuff

Numerical Methods

- Many problems are too large or too complicated to be solved with pen and paper or do not have a closed form solution
- Goal of this lecture: Study different basic types of problems and learn about ways to solve them with a computer
- Understand why such methods work
- Learn how to implement them in Matlab

Visual Computing

- Synthesizing, reconstructing or analyzing image and video data
- Key technology in many areas
- I'll try to tailor the examples to visual computing

Exercises

- Exercise sheets covering the content of the lecture will be passed out every Tuesday
- Exercises contain theoretical as well as programming problems
- You have one week for the exercise sheets and will turn in your solutions on Tuesday
- You may work on the exercises in groups of two
- The solutions will be discussed in the exercises on Friday
- Reaching at least 50% of the total exercise points is required for being admitted to the final exam
- If solutions have obviously been copied, both groups will get 0 points

Questions within the lecture

The more we discuss in the lecture, the more interesting the course will be! Please don't be shy to say something!

Examination

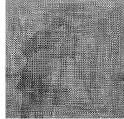
- Depending on the number of attendees, the final exam will be either oral or written.
- This lecture is worth 5 credits.

Miscellaneous

- My office: H-A 7106
- · Office hours: Please write an email.
- Lecture: Starts at quarter past. Short break in between.
- Course website: http://www.vsa.informatik. uni-siegen.de/en/numerical-methods-1718
- To access the course material: username: "student", password "100%brain"

Error analysis and the condition of a problem

Things that can go wrong,


Example 1: Does the distributive property hold?

$$(x-y)^2 = x^2 - xy - yx + y^2$$
?

• Example 2: Image deblurring - does noise matter?

Organization and Introduction

Michael Moeller

Organizational Things

Linear regression

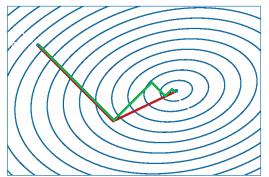
How to fit a linear parametric model to some measured data?

Solve $\min_{u} ||Au - f||^2$ and variants thereof

Organization and Introduction

Michael Moeller

Organizational Things


Linear equations

How to solve linear equations

• Exactly, e.g. using Gaussian elimination

$$\left[\begin{array}{cc|cccc} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{array} \right] \ \rightarrow \ \left[\begin{array}{cccccc} \tilde{a}_{11} & \tilde{a}_{12} & \tilde{a}_{13} & \tilde{b}_1 \\ 0 & \tilde{a}_{22} & \tilde{a}_{23} & \tilde{b}_2 \\ 0 & 0 & \tilde{a}_{33} & \tilde{b}_3 \end{array} \right]$$

Iteratively, e.g. using the conjugate gradient method

From Wikipedia: https://de.wikipedia.org/wiki/CG-Verfahren

Organization and

Michael Moeller

Organizational Things

Assume you have a differentiable but slightly complicated function, e.g.

$$E(\theta) = \sum_{i=1}^{n} (1 - 2y_i) \log \left(\frac{1}{1 + \exp(-\langle \theta, x_i \rangle)} \right) + \frac{\lambda}{2} \|\theta\|^2$$

and you want to minimize it with respect to θ .

As we will see a necessary and sufficient condition is (in this case)

$$\nabla E(\theta) = 0$$

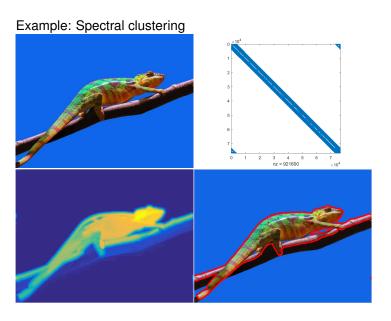
But how can we solve this equation?

Solving nonlinear equations

Our answer here: Determine $\nabla E(u) = 0$ using Newton's

method!

Our example: Learn a very simple color skin-detector!

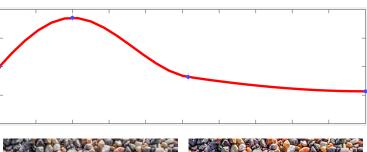

Organization and Introduction

Michael Moeller

Organizational Things

Computing eigenvalues and eigenvectors

Organization and Introduction

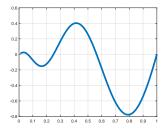

Michael Moeller

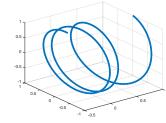
Organizational Things

Interpolation

Example: Image filter gui with drag and drop points on a curve

Organization and Introduction


Michael Moeller



Organizational Things

Integration

How to compute the integral over a function numerically? How to compute the line integral over a function?

In higher dimensions: What is the volume under a surface?

Organization and Introduction

Michael Moeller

Organizational Things