Chapter 2

Gradient Methods

Convex Optimization for Computer Vision SS 2018

Michael Moeller
Visual Scene Analysis
Department of Computer Science
and Electrical Engineering
University of Siegen

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

ck to GD

L-smooth functions
Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 1/85

Gradient Descent

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 2/85

Unconstrained and smooth optimization

Recall what the lecture is all about:

$$u^* \in \arg\min_{u \in \mathbb{R}^n} E(u),$$

for $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ proper, closed, convex.

We start making our life easier:

- dom $F = \mathbb{R}^n$
- $E \in \mathcal{C}^1(\mathbb{R}^n)$
- · Even more assumptions later :-)

Gradient Methods

Michael Moeller

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates Applications

Conclusion

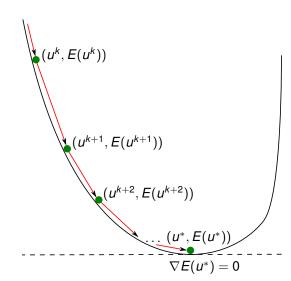
Projected GD

Convergence Applications

Proximal Gradient
Extensions

from 07.06.2018, slide 3/85

 $\min E(u), \qquad u \in \mathbb{R}^n$



Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Proximal Grad

from 07.06.2018, slide 4/85

- Suppose we are at a point $u^k \in \mathbb{R}^n$ where $\nabla E(u^k) \neq 0$
- Consider the ray $u(\tau) = u^k + \tau d$ for some direction $d \in \mathbb{R}^n$
- Taylor expansion for E along ray

$$E(u(\tau)) = E(u^k + \tau d) = E(u^k) + \tau \langle \nabla E(u^k), d \rangle + o(\tau)$$

- The term $au\langle \nabla E(u^k), d \rangle$ dominates o(au) for suff. small au
- Pick d such that $\langle \nabla E(u^k), d \rangle < 0$, descent direction
- Then $E(u(\tau)) < E(u)$ for suff. small τ

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

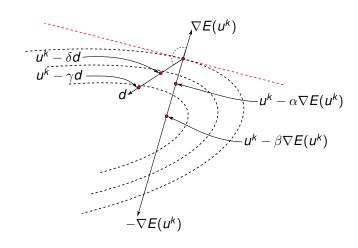
Projected GD

Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 5/85



Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications
Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 6/85

The negative gradient is the steepest descent direction

$$\underset{\|d\|=1}{\operatorname{argmin}} \left\{ \langle d, \nabla E(u^k) \rangle \right\} = -\frac{\nabla E(u^k)}{\|\nabla E(u^k)\|}$$

• The gradient is orthogonal to the iso-contours $\gamma:I\to\mathbb{R}^n$

$$\nabla E(\gamma(t)) \perp \dot{\gamma}(t), \qquad t \in I$$

- · Possible choices of descent directions
 - Scaled gradient: $d^k = -D^k \nabla E(u^k), D^k \succeq 0$
 - Newton: $D^k = [\nabla^2 E(u^k)]^{-1}$
 - Quasi-Newton: $D^k \approx [\nabla^2 E(u^k)]^{-1}$
 - Steepest descent: $D^k = I$
 - •

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

Gradient descent

Definition

Given a function $E \in \mathcal{C}^1(\mathbb{R}^n)$, an initial point $u^0 \in \mathbb{R}^n$ and a sequence $(\tau_k) \subset \mathbb{R}$ of step sizes, the iteration

$$u^{k+1} = u^k - \tau_k \nabla E(u^k), \qquad k = 0, 1, 2, ...,$$

is called gradient descent.

Philosophy:

- Generate (decreasing?) sequence $\{E(u^k)\}_{k=0}^{\infty}$
- Each iteration is cheap, easy to code

Choice of τ_k :

- $\tau_k = \tau$ for some constant $\tau \in \mathbb{R}$ (this lecture)
- Exact line search $\tau_k = \arg \min_{\tau} \ E\left(u^k \tau \nabla E(u^k)\right)$
- Inexact line search (more later)

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

Jack to GD

Convergence rates

Applications

Conclusion

Projected GD

Convergence Applications

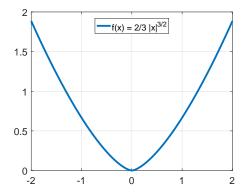
Proximal Gradient

Extensions

from 07.06.2018, slide 8/85

Constant step size

Let us first consider a constant step size $\tau^k = \tau$. Will gradient descent work for any convex function E? NO!



Board: For any $\tau > 0$, the starting point $u^0 = \left(\frac{\tau}{2}\right)^2$ leads to the gradient descent sequence $u^0, -u^0, u^0, -u^0 \ldots$ In fact, gradient descent will fail to converge for almost any starting point!

Gradient Methods

Michael Moeller

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators

L-smooth functions

Convergence rates
Applications

Conclusion

Projected GD

Convergence Applications

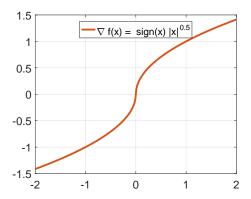
Proximal Gradient

Extensions

from 07.06.2018, slide 9/85

Constant step size

Let us first consider a constant step size $\tau^k = \tau$. Will gradient descent work for any convex function E? NO!



Board: For any $\tau > 0$, the starting point $u^0 = \left(\frac{\tau}{2}\right)^2$ leads to the gradient descent sequence $u^0, -u^0, u^0, -u^0 \ldots$ In fact, gradient descent will fail to converge for almost any starting point!

Gradient Methods

Michael Moeller

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators

Back to GD L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient

from 07.06.2018, slide 10/85

Why can it fail?

Intuitively, an "infinitely quickly changing gradient", ∇E , seems to cause the problems!

We already know a stronger version of continuity which prevents "infinitely quick changes"!

Reminder

 $f:\mathbb{R}^n \to \mathbb{R}^m$ is called Lipschitz continuous if for some $L \geq 0$

$$||f(x)-f(y)|| \leq L ||x-y||, \quad \forall x,y \in \mathbb{R}^n.$$

Is there a (possibly easier) characterization of Lipschitz continuous functions?

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications

Extensions

Proximal Gradient

from 07.06.2018, slide 11/85

Lipschitz continuity

Theorem: Lipschitz continuity for differentiable functions

A differentiable function $E: \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz with parameter L if and only if $\|\nabla E(x)\|_{\mathcal{S}^{\infty}} \leq L$ for all $x \in \mathbb{R}^n$.

Definition: L-smooth function

If $E:\mathbb{R}^n\to\mathbb{R}$ is continuously differentiable and its first derivative is Liptschitz continuous, i.e. there exists an $L\geq 0$ such that

$$\|\nabla E(u) - \nabla E(v)\| \le L \|u - v\|, \forall u, v \in \mathbb{R}^n,$$

then E is called L-smooth (in some literature L-strongly smooth). We denote the set

- of all *L*-smooth functions by $C_L^{1,1}(\mathbb{R}^n)$.
- of all convex *L*-smooth functions by $\mathcal{F}_L^{1,1}(\mathbb{R}^n)$.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Averaged operator

Back to GD

L-smooth functions

Convergence rates Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 12/85

How to analyze the convergence?

Conjecture

For any L-smooth proper convex function E (for which a minimizer exists) there exists a step size τ such that the gradient descent algorithm converges

But how do we proceed in proving the assertion?

If this was a research project: Using the assumptions, try to write down smart estimates until you have an inequality from which you can conclude the convergence.

Since this is a lecture: General convergence framework that applies to many convex optimization algorithms!

Gradient Methods

Michael Moeller

Visual

Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient

from 07.06.2018, slide 13/85

Fixed-point iterations

A form many algorithms can be written into:

$$u^{k+1}=G(u^k),$$

for an update function G, i.e. a **fixed-point iteration**!

Example:

$$G(u) = u - \tau \nabla E(u).$$

If the iteration converges, i.e. $\hat{u} = \lim_{k \to \infty} u^k$, then

$$\hat{u} = \hat{u} - \tau \nabla E(\hat{u}),$$

i.e. $\nabla E(\hat{u}) = 0$ (where we assumed ∇E to be continuous).

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions
Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

from 07.06.2018, slide 14/85

Convergence of Fixed-Point Iterations

References:

- Ryu and Boyd, Primer on Monotone Operator Methods, 2016.
- Burger, Sawatzky, and Steidl, First Order Algorithms in Variational Image Processing, 2017.
- Bauschke, and Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2011.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of ixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 15/85

Fixed-point iterations with contractions

When does the fixed-point iteration

$$u^{k+1} = G(u^k) \tag{1}$$

converge?

Banach fixed-point theorem

If the update rule $G: \mathbb{R}^n \to \mathbb{R}^n$ is a **contraction**, i.e. if there exists a L < 1 such that

$$||G(u) - G(v)||_2 \le L||u - v||_2$$

holds for all $u, v \in \mathbb{R}^n$, then the iteration (1) converges to the unique fixed-point \hat{u} of G. More precisely,

$$||u^k - \hat{u}||_2 \le L^k ||u^0 - \hat{u}||_2.$$

Gradient Methods

Michael Moeller

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

from 07.06.2018, slide 16/85

Examples for fixed-point iterations with contractions

The function $G(u) = \frac{u+\frac{1}{2}}{u+1}$ is a contraction on $[0, \infty[$. Therefore, the fixed point iteration converges to $\frac{1}{\sqrt{2}}$.

Later: The gradient descent update is a contraction for specific energies E.

Gradient Methods

Michael Moeller

Gradient Descent (GD) Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications Extensions

Proximal Gradient

from 07.06.2018, slide 17/85

Fixed-point iterations with averaged operators

As we will see, the assumption of G being a contraction is too restrictive in many cases!

One thing that often holds easily, is that G is **non-expansive**. i.e. Lipschitz continuous with constant L=1.

Example: Any rotation G is non-expansive, any rotation has a fixed point (zero), but the iteration $u^{k+1} = G(u^k)$ does not converge!

→ We need more!

Averaged operator

An operator $G: \mathbb{R}^n \to \mathbb{R}^n$ is called **averaged** if there exists a non-expansive mapping $H: \mathbb{R}^n \to \mathbb{R}^n$ and a constant $\alpha \in]0,1[$ such that

$$G = \alpha I + (1 - \alpha)H.$$

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates Applications

Conclusion

Projected GD

Convergence Applications

Extensions

Proximal Gradient

from 07.06.2018, slide 18/85

Convergence for averaged operators

Gradient Methods

Michael Moeller

Visual Scene Analysis

Krasnosel'skii-Mann Theorem

If the operator $G: \mathbb{R}^n \to \mathbb{R}^n$ is averaged and has a fixed-point, then the iteration

$$u^{k+1} = G(u^k)$$

converges to a fixed point of G for any starting point $u^0 \in \mathbb{R}^n$.

Proof: Board

Gradient Descent (GD)

Definition
Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates
Applications

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient

from 07.06.2018, slide 19/85

Criteria for being averaged

averaged operators.

We now have two loose ends: A conjecture about the conergence of the gradient descent iteration, and a theorem that states the convergence of a fixed-point iteration for

We need a better understanding of averaged operators!

Gradient Methods

Michael Moeller

Visual A nalysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 20/85

Criteria for being averaged

Lemma about nonexpansive operators

Convex combinations as well as compositions of nonexpansive operators are nonexpansive.

Being averaged for smaller α

If a function $G: \mathbb{R}^n \to \mathbb{R}^n$ is averaged with respect to $\alpha \in]0,1[$, then it is also averaged with respect to any other parameter $\tilde{\alpha} \in]0,\alpha[$.

Composition of averaged operators

If $G_1:\mathbb{R}^n\to\mathbb{R}^n$ and $G_2:\mathbb{R}^n\to\mathbb{R}^n$ are averaged, then $G_2\circ G_1$ is also averaged.

Proofs: Board

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient
Extensions

from 07.06.2018, slide 21/85

Criteria for being averaged

Firmly non-expansive

A function $G: \mathbb{R}^n \to \mathbb{R}^n$ is called **firmly nonexpansive**, if for all $u, v \in \mathbb{R}^n$ it holds that

$$||G(u)-G(v)||_2^2 \leq \langle G(u)-G(v), u-v\rangle.$$

Firmly nonexpansive operators are averaged

A function $G: \mathbb{R}^n \to \mathbb{R}^n$ is firmly nonexpansive if and only if G is averaged with $\alpha = \frac{1}{2}$.

Proof: Board

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates
Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient

from 07.06.2018, slide 22/85

Short summary

We have seen:

- An operator G is called a contraction if it is Lipschitz continuous with L < 1.
- Contractions have a unique fixed-point and their fixed-point iteration converges with 𝒪(L^k).
- An operator R is called a nonexpansive if it is Lipschitz continuous with L = 1.
- An operator G is called a averaged if G = αI + (1 − α)R for some nonexpansive operator R and α ∈]0, 1[.
- If an averaged operator has a fixed-point, then the fixed-point iteration converges. The convergence rate states that ∑_{k=1}ⁿ ||G(u^k) - u^k||₂ ≤ C for some constant C.
- Firmly nonexpansive operators are the same as averaged operators with $\alpha = \frac{1}{2}$.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Extensions

Relation to gradient descent

Let us use the previous results for approaching our gradient descent convergence problem:

Baillon-Haddad theorem

A continuously differentiable convex function $E: \mathbb{R}^n \to \mathbb{R}$ is L-smooth if and only if $\frac{1}{l} \nabla E$ is firmly nonexpansive, i.e.

$$\langle \nabla E(u) - \nabla E(v), u - v \rangle \ge \frac{1}{I} \|\nabla E(u) - \nabla E(v)\|_2^2$$

for all $u, v \in \mathbb{R}^n$.

Proof: Some parts on the board. Otherwise see Nesterov, *Introductory Lectures on Convex Optimization*, Theorem 2.1.5.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators

Back to GD

L-smooth functions
Convergence rates

Applications

Conclusion
Projected GD

Convergence Applications

Proximal Gradient

from 07.06.2018, slide 24/85

Tools for the proof

Theorem: characterization of convex functions

For a continuously differentiable E the following are equivalent:

- E is convex,
- $2 E(v) E(u) \langle \nabla E(u), v u \rangle \ge 0 \ \forall u, v,$
- **4** $\nabla^2 E(u) \succeq 0$ ∀u, if $E \in C^2(\mathbb{R}^n)$

Proof: E.g. Ryu, Boyd, A Primer on Monotone Operator Methods, Appendix A. **Gradient Methods**

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient

from 07.06.2018, slide 25/85

Convergence of gradient descent

Gradient descent as an averaged operator

If $E: \mathbb{R}^n \to \mathbb{R}$ has a minimizer, is convex and L-smooth, and $\tau \in]0, \frac{2}{L}[$, then the gradient descent iteration converges to a minimizer.

- Sufficient: $G(u) = u \tau \nabla E(u)$ is averaged.
- We know $\frac{1}{L}\nabla E$ is averaged with $\alpha=1/2$, i.e., $\frac{1}{L}\nabla E=\frac{1}{2}(I+T)$ for a non-expansive T.
- It hold that

$$G(u) = u - \tau L \frac{1}{L} \nabla E(u) = \left(1 - \frac{L\tau}{2}\right) u + \frac{L\tau}{2} (-T)(u)$$

• If T is non-expansive, (-T) is non-expansive, too. \Rightarrow For $\tau \in]0, \frac{2}{L}[$, G is averaged.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion
Projected GD

Convergence Applications

Extensions

Proximal Gradient

from 07.06.2018, slide 26/85

Convergence rate

How fast does gradient descent converge?

Reminder: O-notation

$$\mathcal{O}(g) = \{f \mid \exists \textit{C} \geq 0, \exists \textit{n}_0 \in \mathbb{N}_0, \forall \textit{n} \geq \textit{n}_0 : |\textit{f}(\textit{n})| \leq \textit{C}|\textit{g}(\textit{n})|\}$$

Convergence speed of gradient descent

One can show that

$$E(u^{k+1}) \le E(u^k)$$
 and $E(u^k) - E(u^*) \in \mathcal{O}(1/k)$

Linear convergence $(\mathcal{O}(c^k))$ for c<1) would be faster. Is there no way to get a contraction?

Quick answer: Impossible in this generality! A contraction would imply the existence of a unique fixed-point!

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators

Back to GD

Contractions

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Applications

Proximal Gradient
Extensions

from 07.06.2018, slide 27/85

Strong convexity

Definition: strong convexity

A function $E: \mathbb{R}^n \to \overline{\mathbb{R}}$ is called *strongly convex* with constant m or m-strongly convex if $E(u) - \frac{m}{2} \|u\|_2^2$ is still convex.

Theorem: characterization of *m*-strongly convex functions ^a

^aRyu, Boyd, A Primer on Monotone Operator Methods, Appendix A

For $E \in C^1(\mathbb{R}^n)$ the following are equivalent:

- 1 $E(u) \frac{m}{2} ||u||^2$ is convex

- **4** $\nabla^2 E(u) \succeq m \cdot I$, if $E \in C^2(\mathbb{R}^n)$

L-smoothness

If a continuously differentiable function $E: \mathbb{R}^n \to \overline{\mathbb{R}}$ is L-smooth then R, $R(u) = \frac{L}{2}||u||^2 - E(u)$, is convex.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of

Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates Applications

Conclusion

Projected GD
Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 28/85

Strongly-convex + L-smooth

Gradient descent as an averaged operator

If $E: \mathbb{R}^n \to \mathbb{R}$ is m-strongly convex and L-smooth, and $\tau \in]0, \frac{2}{m+L}[$, then the gradient descent iteration converges to the unique minimizer u^* of E with $||u^k - u^*|| < c^k ||u^0 - u^*||$.

Partial proof on the board.

In computer vision, m-strongly convex L-smooth energies are very rare! Can one do better than the $\mathcal{O}(1/k)$ in the *L*-smooth case?

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications

Proximal Gradient
Extensions

from 07.06.2018, slide 29/85

Optimal convergence rates

Famous analysis by Nesterov, e.g. *Introductory Lectures on Convex Optimization*, Theorem 2.1.7 and Theorem 2.1.13:

First order method:

$$u^{k+1} \in u^0 + \text{span}\{\nabla E(u^0), \dots, \nabla E(u^k)\}$$

- If E can be any convex L-smooth function (that has a minimizer), then no first order method can have a worst-case complexity less than $\mathcal{O}(1/k^2)$.
- If E can be any convex L-smooth and m-strongly convex function, then no first order method can have a worst-case complexity less than $\mathcal{O}((\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1})^{2k})$ for $\kappa=L/m$.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD
Convergence

Applications

Proximal Gradient

from 07.06.2018, slide 30/85

Obtaining optimal convergence rates

Nesterov's Accelerated Gradient Descent

Pick some starting point $v^0 = u^0$, set $t_0 = 1$, and iterate

Compute

$$u^{k+1} = v^k - \frac{1}{L} \nabla E(v^k)$$

Set

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$

3 Compute the extrapolation of u^{k+1} via

$$v^{k+1} = u^{k+1} + \frac{t_k - 1}{t_{k+1}} (u^{k+1} - u^k)$$

Gradient Methods

Michael Moeller

Visual Analysis

Gradient Descent (GD) Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators Back to GD

Contractions

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient Extensions

from 07.06.2018, slide 31/85

¹ Also see "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems" by Beck and Teboulle

Backtracking line search

- Sometimes Lipschitz constant L not known
- The convergence analysis shows that one really only needs

$$E(u^{k+1}) \leq E(u^k) - \beta_k \|\nabla E(u^k)\|^2$$

for some $\beta_k \geq \beta > 0$.

- Idea: Pick $\alpha \in (0, 0.5), \beta \in (0, 1)$
- Then determine τ_k each iteration by:

$$au_k \leftarrow 1$$
 while $E\left(u^k - au_k \nabla E(u^k)\right) > E(u^k) - lpha au_k \left\| \nabla E(u^k) \right\|^2$ $au_k \leftarrow eta au_k$ end

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient

from 07.06.2018, slide 32/85

Backtracking line search

Line search...

- · ... often leads to improved convergence in practice
- · ... has a (slight) overhead each iteration
- ... has the same convergence rate as with constant steps

For a backtracking line search scheme for Nesterov's accelerated gradient method please see *Introductory Lectures* on *Convex Optimization*, page 76, scheme (2.2.6), or *A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems* by Beck and Teboulle, page 194.

Remark: Other strategies for linear search exists, e.g.

$$\tau_k = \arg\min_{\tau} E(u^k - \tau \nabla E(u^k))$$

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient

from 07.06.2018, slide 33/85

Application: TV image denoising

Lets consider the applications of image denoising:

Via energy minimization: Let D_1 and D_2 be finite difference operators for the partial derivatives. Determine

$$\hat{u} \in \arg\min_{u} \underbrace{\frac{\lambda}{2} \|u - f\|_{2}^{2}}_{=H_{t}(u) \text{stay close to input}} + \underbrace{\sum_{x \in \Omega} \sqrt{(D_{1}u(x))^{2} + (D_{2}u(x))^{2}}}_{=TV(u) \text{ suppress noise}}$$

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 34/85

Application: TV image denoising

Problem: The so called total variation regularization

$$TV(u) = \sum_{x \in \Omega} \sqrt{(D_1 u(x))^2 + (D_2 u(x))^2}$$

is not differentiable!

Idea: Approximate it with a differentiable function

$$TV_{\epsilon}(u) = \sum_{x \in \Omega} \phi \sqrt{(D_1 u(x))^2 + (D_2 u(x))^2 + \epsilon^2}$$

Exercises: Our denoising model is *L*-smooth for

$$L = \lambda + \frac{\|D\|_{\mathcal{S}^{\infty}}}{\epsilon}$$

We expect the convergence to be better for large ϵ , but we expect $TV(u) \approx TV_{\epsilon}(u)$ only for small ϵ ...

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators

Back to GD

L-smooth functions
Convergence rates
Applications

Contractions

Conclusion

Projected GD

Convergence
Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 35/85

Image denoising

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 36/85

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 37/85

 $\rightarrow \textit{Motivation for non-smooth optimization!}$

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

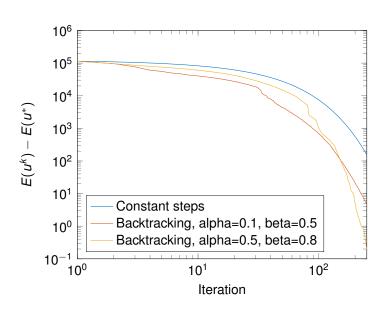
Convergence

Applications

Proximal Gradient

from 07.06.2018, slide 38/85

Convergence, backtracking line search



Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Proximal Gra

from 07.06.2018, slide 39/85

Image inpainting

$$1-m\in\mathbb{R}^N$$

$$u^* \in \underset{u}{\operatorname{argmin}} \frac{\lambda}{2} \| m \cdot (u - f) \|^2 + TV_{\epsilon}(u)$$

- Energy is not strongly convex, but L-smooth
- · Sublinear upper bound on convergence speed

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Extensions

Proximal Gradient

from 07.06.2018, slide 40/85

Image Inpainting

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of **Fixed-Point Iterations**

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient Extensions

from 07.06.2018, slide 41/85

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

rojecteu GD

Convergence

Applications

Proximal Gradient
Extensions

from 07.06.2018, slide 42/85

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient
Extensions

from 07.06.2018, slide 43/85

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient
Extensions

....

from 07.06.2018, slide 44/85

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 45/85

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 46/85

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 47/85

Fast optimization challenge I

Minimize the inpainting energy

$$E(u) = \frac{\lambda}{2} \|m \cdot (u - f)\|^2 + \sum_{i=1}^{2N} h_{\varepsilon} ((Du)_i) + \beta \|u\|^2$$

- Huber penalty $h_{\varepsilon}(x) = \begin{cases} \frac{x^2}{2\varepsilon} & \text{if } |x| \leq \varepsilon, \\ |x| \frac{\varepsilon}{2} & \text{otherwise.} \end{cases}$
- · Given all the parameters, return the solution once

$$\frac{E(u^k) - E(u^*)}{E(u^*)} < \delta$$

- See template challenge_huber_inpainting.m
- Live leaderboard on homepage
- · Fastest solution at end of semester receives a prize!

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 48/85

Handwritten digit recognition

- MNIST dataset², handwritten digit recognition
- K = 10 digits, 28×28 grayscale images
- n = 60000 training images $X \in \mathbb{R}^{n \times 768}$, with ground-truth labels $Y \in \{1, ..., 10\}^n$
- Learn simple *linear* model $W \in \mathbb{R}^{10 \times 768}$ on raw pixel data
- Softmax regression (multinomial logistic regression)

$$p(y_i = k | x_i, W) = \frac{\exp(\langle w_k, x_i \rangle)}{\sum_{i=1}^K \exp(\langle w_i, x_i \rangle)}$$

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 49/85

²http://yann.lecun.com/exdb/mnist/

Multinomial logistic regression

· Minimize negative log-likelihood

$$E(W) = -\log \frac{1}{n} \prod_{i=1}^{n} p(y_i = k | x_i, W) p(W)$$
$$= -\frac{1}{n} \sum_{i=1}^{n} \log p(y_i = k | x_i, W) + \lambda \|W\|_F^2$$

- It can be shown that E(W) is λ -strongly convex
- E(W) is also L-smooth (bound: $\lambda + \frac{\|X\|^2}{4n}$)
- Minimize using gradient descent with $au = \frac{2}{2\lambda + ||X||^2/4n}$
- Gradient computation expensive → stochastic methods! (we won't cover them)

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

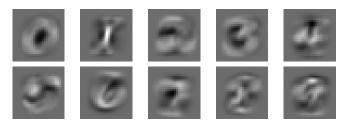
Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 50/85

Multinomial logistic regression



- · Classifier gives around 10% error on test set
- Current best: 0.21% (convolutional neural networks)

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

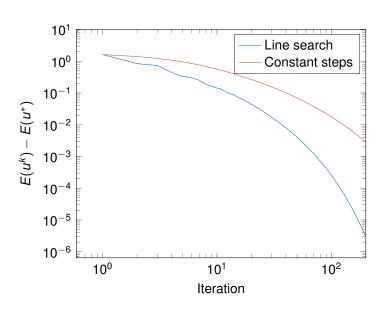
Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 51/85

Multinomial logistic regression



Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

from 07.06.2018, slide 52/85

Concluding remarks and outlook

- GD is still popular to date due to its simplicity and flexibility
- Various theoretically optimal extensions (Heavy-ball acceleration, Nesterov momentum) exist
- Envelope approach: many advanced algorithms for non-smooth optimization are just gradient descent on a particular (albeit complicated) energy
- · Endless of variants and modifications of descent methods
- conjugate, accelerated, preconditioned, projected, conditional, mirrored, stochastic, coordinate, continuous, online, variable metric, subgradient, proximal, ...

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 53/85

Subgradient descent in one slide

We have seen in the exercises, that even for functions that are not *L*-smooth, gradient descent with a small step size reduces the energy up to some point where it starts oscillating.

Possible convergent variant: Subgradient descent

$$u^{k+1} = u^k - \tau_k p^k$$
, for any $p^k \in \partial E(u^k)$.

If it holds that

- E has a minimizer
- E is Lipschitz continuous
- $\tau_k \to 0$, but $\sum_{k=1}^n \tau_k \to \infty$, e.g. $\tau_k = 1/k$

then the subgradient descent iteration converges with

$$E(u^k) - E(u^*) \in \mathcal{O}(1/\sqrt{k})$$

Gradient Methods

Gradient Wethous

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition
Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 54/85

Summary

This lecture is about

$$u^* \in \arg\min_{u \in \mathbb{R}^n} E(u),$$

for $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ proper, closed, convex.

Gradient descent:

- dom $E = \mathbb{R}^n$
- For L-smooth E (that has a minimizer)
 - energy convergence in $\mathcal{O}(1/k)$ for constant step sizes
 - energy convergence in $\mathcal{O}(1/k^2)$ for Nesterov's method.
- For L-smooth m-strongly convex E: energy and iterate convergence in $\mathcal{O}(c^k)$
- Line search strategies for unknown Lipschitz constant *L*.

Up next: **Gradient projection!** Generalizes gradient descent to arbitrary (nonempty, closed, convex) dom(E).

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition
Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Proximal Gra

REFISIONS

from 07.06.2018, slide 55/85

Gradient Projection

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected G

Convergence

Applications

Proximal Gradient Extensions

from 07.06.2018, slide 56/85

Gradient projection

Type of problem:

$$u^* \in \arg\min_{u \in \mathcal{C}} E(u),$$
 (2)

for an *L*-smooth *E*, and a nonempty, closed, convex set *C*.

What is the *projection* onto the set *C*?

Definition: Projection

For a (nonempty) closed convex set $C \subset \mathbb{R}^n$,

$$\pi_{\mathcal{C}}(v) = \operatorname*{argmin}_{u \in \mathcal{C}} \|u - v\|_2^2$$

is called the projection of v onto the set C.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

1--I- t- CD

Back to GD L-smooth functions

Convergence rates Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 57/85

Projections

Existence and Uniqueness of the Projection

For any (nonempty) closed convex set $C \subset \mathbb{R}^n$ and any v the projection $\pi_C(v)$ exists and is single valued.

Proof: Board.

Abuse of notation: Although $\pi_C(v)$ is (by definition) a set, we also identify $\pi_C(v)$ with the single element in the set.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates
Applications

Conclusion Projected GD

Convergence Applications

Proximal Gradient
Extensions

from 07.06.2018, slide 58/85

Example projections

Gradient Methods

Michael Moeller

Visual A nalysis

What is the projection of $v \in \mathbb{R}^n$ onto

- $C = \{u \in \mathbb{R}^n \mid ||u||_2 < 1\}$?
- $C = \{u \in \mathbb{R}^n \mid ||u||_{\infty} := \max_i |u_i| \le 1\}$?
- $C = \{u \in \mathbb{R}^n \mid u_i \in [a, b]\}$?
- $C = \{u \in \mathbb{R}^n \mid u_i > a\}$?

Gradient Descent (GD)

Definition Intuition about convergence

Convergence of **Fixed-Point Iterations**

Contractions

Averaged operators

Back to GD

L-smooth functions Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient Extensions

from 07.06.2018, slide 59/85

Idea of gradient projection

Consider a problem

$$u^* \in \arg\min_{u \in C} E(u),$$
 (3)

for *L*-smooth *E*, and a nonempty, closed, convex set *C*.

We know how gradient descent works, but updating $u^{k+1} = u^k - \tau^k \nabla E(u^k)$ may lead to $u^{k+1} \notin C$.

Idea: Project every iteration back to the feasible set, i.e.

$$u^{k+1} = \pi_C(u^k - \tau^k \nabla E(u^k))$$

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition
Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates
Applications

Conclusion

Projected GD

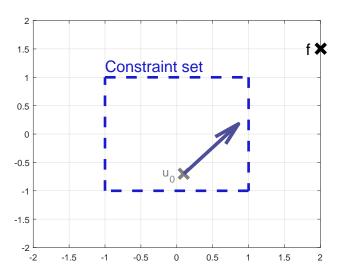
Convergence Applications

Proximal Gradient

from 07.06.2018, slide 60/85

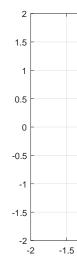
Idea of gradient projection

Toy problem $\min_{|u_i| \le 1} ||u - f||_2^2$



Gradient Methods

Michael Moeller



Gradient projection algorithm

Gradient projection algorithm

Let $C \subset \mathbb{R}^n$ be a nonempty closed convex set and let

$$E: \mathbb{R}^n \to \mathbb{R} \in C^1(\mathbb{R}^n)$$
. Then, for $u^0 \in C$

$$u^{k+1} = \pi_C(u^k - \tau \nabla E(u^k))$$

is called the *gradient projection* algorithm.

When, how, why, and for which E and τ does it work?

As usual in this lecture: Analyze the **fixed-point iteration** of

$$G(u) = \pi_C(u - \tau \nabla E(u))$$

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions Averaged operators

Back to GD

L-smooth functions

Convergence rates Applications Conclusion

Projected GD

Convergence

Applications

Proximal Gradient Extensions

from 07.06.2018, slide 62/85

Projected GD as a fixed-point iteration

We already know that ...

1 ... for $\tau \in]0, \frac{2}{I}[$ the following operator is averaged

$$G_1(u) = u - \tau \nabla E(u)$$

2 ... compositions of averaged operators are averaged.

All we have to do is showing that π_C is averaged!

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Extensions

Proximal Gradient

from 07.06.2018, slide 63/85

Properties of the projection

Firm Nonexpansiveness

The projection π_C onto a nonempty closed convex set $C \subset \mathbb{R}^n$ is *firmly nonexpansive*, i.e. it meets

$$\langle u - v, \pi_{\mathcal{C}}(u) - \pi_{\mathcal{C}}(v) \rangle \geq \|\pi_{\mathcal{C}}(u) - \pi_{\mathcal{C}}(v)\|^2 \qquad \forall u, v \in \mathbb{R}^n.$$

Proof: Board

This makes $\pi_{\mathcal{C}}$ averaged and we can immediately conclude:

Conclusion

For an *L*-smooth energy *E* that has a minimizer and a choice $\tau \in]0, \frac{2}{t}[$ the gradient projection converges!

Similar to the gradient descent case, the convergence rate is $\mathcal{O}(1/k)$ and suboptimal. We will discuss accelerations to $\mathcal{O}(1/k^2)$ of a generalized version later.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators

Back to GD

L-smooth functions

Contractions

Convergence rates

Applications

Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 64/85

Convergence of the projected gradient descent

A simple calculation (done in the exercises) shows:

Compositions can yield contractions

The composition of a non-expansive operator with a contraction is a contraction.

The above means our gradient descent result carries over:

Conclusion

For E being L-smooth and m-strongly convex and $\tau \in]0, \frac{2}{L}[$ the gradient projection algorithm converges to the (unique) global minimizer u^* with $E(u^k) - E(u^*) \in \mathcal{O}(c^k)$ for c < 1.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Averageu operar

Back to GD

L-smooth functions Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications

Proximal Gradient
Extensions

from 07.06.2018, slide 65/85

Find the missing numbers such that each block, each row, and each column contains each number 1– 4 only once!

		3
3		
	3	2
2	4	
4	1	3
	2	3 2 4

2	4	1	3
1	3	2	4
4	1	3	2
3	2	4	1

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD
Convergence

Applications

Proximal Gradient

How can we do this with convex optimization?

from 07.06.2018, slide 66/85

In the 4 × 4 case we look for a matrix $u \in \{1, 2, 3, 4\}^{4 \times 4}$ such that $u_{i,j} = f_{i,j}$ for those entries $f_{i,j}$ which are given.

Reformulation: We look for a matrix $\mathbf{u} \in \{0, 1\}^{4 \times 4 \times 4}$, where $\mathbf{u}_{i,i,k} = 1$ means $u_{i,i} = k$.

Rule	Implication	
One number for each blank spot	$\sum_{k} \mathbf{u}_{i,j,k} = 1$	$\forall i, j$
Respect given entries	$\mathbf{u}_{i,j,k} = 1 \text{ if } f_{i,j} = k$	
Numbers occur in a row once	$\sum_{j} oldsymbol{u}_{i,j,k} = 1$	$\forall i, k$
Numbers occur in a column once	$\sum_{i} oldsymbol{u}_{i,j,k} = 1$	$\forall j, k$
Numbers occur in a block once	$\sum_{(i,j)\in B_l} oldsymbol{u}_{i,j,k} = 1$	$\forall B_{l}, k$

Find \boldsymbol{u} with $\boldsymbol{u}_{i,j,k} \in \{0,1\}$ subject to the above constraints!

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators

Back to GD

Contractions

L-smooth functions

Convergence rates Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient
Extensions

from 07.06.2018, slide 67/85

All constraints are linear, i.e. can be expressed as $A\vec{u} = \vec{1}$.

SUDOKU rules in matrix form

The scalar product with all variants of the following vectors needs to be one.

In each row each number may only appear once

from 1-4 should number may only be selected appear once

only appear once

Find \boldsymbol{u} with $\boldsymbol{u}_{i,j,k} \in \{0,1\}$ is a nonconvex constraint!

Convex relaxation: Use the smallest convex set that contains the nonconvex one, $\mathbf{u}_{i,j,k} \in [0,1]$.

If the result meets $\mathbf{u}_{i,i,k} \in \{0,1\}$, we solved the nonconvex problem.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions Convergence rates

Applications

Conclusion

Projected GD Convergence

Applications

Proximal Gradient Extensions

from 07.06.2018, slide 68/85

Nice thing for SUDOKU: There exists a solution to $A\vec{u} = \vec{1}!$

This means we may solve

$$\hat{\boldsymbol{u}} \in \underset{\boldsymbol{u}_{i,i,k} \in [0,1]}{\operatorname{argmin}} \|A\vec{\boldsymbol{u}} - \vec{\boldsymbol{1}}\|_2^2$$

Hope that $\hat{\boldsymbol{u}}_{i,j,k} \in \{0,1\}$ in which case we solved the SUDOKU!

Remarks:

- Exact recovery guarantees (when is $\hat{\boldsymbol{u}}_{i,j,k} \in \{0,1\}$) are an active field of research.
- Similar constructions can be done for many computer vision problems! Look for labeling problems, segmentation, graph cuts, or functional lifting.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of

Fixed-Point Iterations
Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

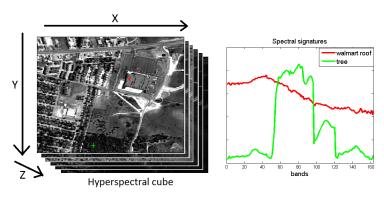
Extensions

Proximal Gradient

from 07.06.2018, slide 69/85

Example application: Unmixing and sparse recovery

Hyperspectral imagery



z-direction: Material specific reflected energy depending on the wavelength of the incoming light

Gradient Methods

Michael Moeller

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions
Convergence rates

Applications

Conclusion

Projected GD
Convergence

A -- !! -- 4! - - -

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 70/85

Example application: Unmixing and sparse recovery

Measured signals f

Find decomposition f = Au + n

Dictionary of materials A, mixing coefficients u (sparse) and noise n

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 71/85

Example application: Unmixing and sparse recovery

General setup: Minimize a data fidelity term $H_f(v)$ which is L-smooth, such that v can be represented in a dictionary A, i.e. v = Au, and the representing coefficients u are sparse.

Energy minimization approach:

$$\min_{u} H_f(Au) + \alpha \|u\|_1.$$

Can we apply gradient descent/ gradient projection?

Not directly, but the problem is equivalent to

$$\min_{u} H_f(A(u_1 - u_2)) + \alpha \langle u_1, \mathbf{1} \rangle + \alpha \langle u_2, \mathbf{1} \rangle, \quad u_1 \geq 0, u_2 \geq 0!$$

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates Applications

Projected GD

Convergence Applications

Conclusion

Proximal Gradient
Extensions

from 07.06.2018, slide 72/85

Example application: Unmixing and sparse recovery

color image illustration

The reformulation of

$$\min_{u} H_f(Au) + \alpha \|u\|_1,$$

$$\Leftrightarrow \min_{u_1,u_2} H_f(A(u_1-u_2)) + \alpha \langle u_1, \mathbf{1} \rangle + \alpha \langle u_2, \mathbf{1} \rangle, \quad u_1 \geq 0, u_2 \geq 0$$

possibly is a little unsatisfying. In particular, it doubles the size of our unknowns. Any other way?

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates
Applications

Conclusion
Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 73/85

Proximal Gradient

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

ack to GD

L-smooth functions
Convergence rates

Applications

Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 74/85

From proj to prox

Remember the theorem

Firm Nonexpansiveness

The projection π_C onto a nonempty closed convex set $C \subset \mathbb{R}^n$ is *firmly nonexpansive*.

and its proof?

$$\langle u - v, \pi_{C}(u) - \pi_{C}(v) \rangle$$

$$= \langle \pi_{C}(u) - \pi_{C}(v) + p_{u} - p_{v}, \pi_{C}(u) - \pi_{C}(v) \rangle$$

$$= \|\pi_{C}(u) - \pi_{C}(v)\|^{2} + \langle p_{u} - p_{v}, \pi_{C}(u) - \pi_{C}(v) \rangle$$

$$\geq \|\pi_{C}(u) - \pi_{C}(v)\|^{2}$$

for $p_u \in \partial \delta_C(\pi_C(u))$, $p_v \in \partial \delta_C(\pi_C(v))$ denoting the subgradients.

We did not use that p_u and p_v were subgradients of an indicator function! The proof still works after replacing δ_C with an arbitrary convex function!

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators

L-smooth functions

Convergence rates Applications

Conclusion

Projected GD

Convergence Applications

TOXIIIIai Gia

Extensions

from 07.06.2018, slide 75/85

Proximal operators

Definition

Given a closed, proper, convex function $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$, the mapping $\operatorname{prox}_E: \mathbb{R}^n \to \mathbb{R}^n$ defined as

$$\operatorname{prox}_{E}(v) := \underset{u \in \mathbb{R}^{n}}{\operatorname{argmin}} \ E(u) + \frac{1}{2} \|u - v\|^{2}$$

is called the proximal operator or proximal mapping of E.

- Existence: $E(u) + (1/2) \|u v\|^2$ is closed and has bounded sublevel sets
- Uniqueness: $E(u) + (1/2) \|u v\|^2$ is strongly convex
- Generalization of the projection: Choose $E = \delta_C$.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 76/85

We have just seen

Firm Nonexpansiveness

The proximal operator $prox_E$ for a closed, proper, convex function E is *firmly nonexpansive*.

Consider minimizing an energy

$$E(u) = F(u) + G(u),$$

for proper, closed, convex F and G such that

- $F: \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth.
- $G: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ has an easy-to-evaluate proximity operator, which we will call *simple*.

The we can take gradient descent steps on *F* and proximal steps on *G*! This is the proximal gradient algorithm!

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 77/85

Proximal gradient algorithm

Definition

For a closed, proper, convex function $G: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ and a function $F \in \mathcal{C}^1(\mathbb{R}^n)$, given an initial point $u^0 \in \mathbb{R}^n$ and a step size τ , the algorithm

$$u^{k+1} = \operatorname{prox}_{\tau G} \left(u^k - \tau \nabla F(u^k) \right), \qquad k = 0, 1, 2, \dots,$$

is called the proximal gradient method.

- Often referred to as forward-backward splitting or ISTA
- For constant G, it reduces to gradient descent
- For constant F, it is called *proximal point algorithm*
- For $G = \delta_C$, it reduces to projected gradient descent

For us (=super-duper experts on fixed point iterations) the convergence analysis is easy!

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications

Conclusion

Projected GD
Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 78/85

Convergence analysis

We have already seen that the prox-operator is firmly nonexpansive, i.e., averaged with $\alpha = 1/2$.

Conclusion

For F being L-smooth, $\tau \in]0, \frac{2}{L}[$, and the overall energy having a minimizer, the proximal gradient method converges.

Contractive prox-operators

If the proper, closed function G is m-strongly convex, then $\text{prox}_{\tau G}: \mathbb{R}^n \to \mathbb{R}^n$ is a contraction.

Conclusion

For F being L-smooth $\tau \in]0, \frac{2}{L}[$, and either G or F being strongly convex, the proximal gradient method converges linearly, i.e., $\|u^k - u^*\|_2^2 \in \mathcal{O}(c^k)$ for some c < 1.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence

Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 79/85

Sanity check + examples

Sanity check: The algorithm converges, but to what?

Board: To a minimizer of E = G + F!

Examples of functions whose prox has a closed form:

Quadratic functions

$$f(u) = \frac{1}{2} ||Au - b||^2$$
, $\text{prox}_{\tau f}(v) = (I + \tau A^T A)^{-1} (v + \tau A^T b)$

• ℓ_1 -norm (cf. exercise sheet 3), "soft thresholding"

$$f(u) = \|u\|_1$$
, $(\operatorname{prox}_{\tau f}(v))_i = \begin{cases} v_i + \tau & \text{if } v_i < -\tau \\ 0 & \text{if } |v_i| \leq \tau \\ v_i - \tau & \text{if } v_i > \tau. \end{cases}$

· Euclidean norm

$$f(u) = \|u\|$$
, $\operatorname{prox}_{\tau f}(v) = egin{cases} (1 - au/\|v\|)v & ext{if } \|v\| \geq au \ 0 & ext{otherwise}. \end{cases}$

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions
Convergence rates

Conclusion
Projected GD

Convergence Applications

Extensions

Applications

Proximal Gradient

from 07.06.2018, slide 80/85

Application sparse recovery

Michael Moeller

Gradient Methods

Michael Moeller

Visual Scene Analysis

We can now solve

$$\min_{u} \|Au - f\|_{2}^{2} + \alpha \|u\|_{1}$$

without smoothing and without the introduction of additional variables!

Gradient Descent (GD)

Definition
Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

Back to GD L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradien

Extensions

from 07.06.2018, slide 81/85

Convergence rates and extensions

Similar to gradient descent the proximal gradient method on

$$E = F + G$$

for *L*-smooth *F*, *E* having a minimizer, and choosing the step size τ to be constant converges with $E(u^k) - E(u^*) \in \mathcal{O}(1/k)$.

Similar to gradient descent one can do better and reach $E(u^k) - E(u^*) \in \mathcal{O}(1/k^2)$.

Similar to gradient descent finding the Lipschitz constant L can be annoying, and one can define line search schemes.

Gradient projection: *Introductory lectures on convex optimization* by Nesterov.

Proximal gradient: A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck, Teboulle, 2009.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Averaged operators

Back to GD

L-smooth functions

Convergence rates
Applications

Projected GD

Convergence Applications

Proximal Gradient

Conclusion

Extensions

from 07.06.2018, slide 82/85

Accelerated proximal gradient

FISTA with constant step size

Pick some starting point $v^0 = u^0$, set $t_0 = 1$, and iterate

Compute

$$u^{k+1} = \operatorname{prox}_{\frac{1}{L}G} \left(v^k - \frac{1}{L} \nabla F(v^k) \right)$$

2 Determine

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2},$$

3 Compute the extrapolation of u^{k+1} via

$$v^{k+1} = u^{k+1} + \frac{t_k - 1}{t_{k+1}}(u^{k+1} - u^k)$$

See Chambolle, Dossal, *On the Convergence of the Iterates of the "Fast Iterative Shrinkage/Thresholding Algorithm"*, 2015, for more general algorithms.

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition
Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 83/85

Accelerated gradient projection with line search

FISTA with backtracking line search

Pick $v^0 = u^0$, set $t_0 = 1$, choose $\beta < 1$, $\tau_0 > 0$, and define $Q_{\tau}(u, v) = F(v) + \langle u - v, \nabla F(v) \rangle + \frac{1}{2\tau} ||u - v||^2 + G(u)$.

1 Find a suitable step size $\tau_k \leq \tau_{k-1}$ via

$$au_k = au_{k-1}, \quad u^{k+1} = \operatorname{prox}_{ au_k G} \left(v^k - au_k
abla F(v^k)
ight)$$
 while $E(u^{k+1}) > Q_{ au}(u^{k+1}, v^k)$
$$au_k \leftarrow eta au_k, \quad u^{k+1} \leftarrow \operatorname{prox}_{ au_k G} \left(v^k - au_k
abla F(v^k)
ight)$$
 end

2 Determine

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2},$$

3 Compute the extrapolation of u^{k+1} via

$$v^{k+1} = u^{k+1} + \frac{t_k - 1}{t_{k+1}} (u^{k+1} - u^k)$$

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition
Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD L-smooth functions

Convergence rates
Applications

Conclusion
Projected GD

Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 84/85

What we can and cannot do yet

As we have seen

$$\min_{u} \frac{1}{2} ||Au - f||^2 + \alpha ||u||_1$$

does not pose a problem anymore.

But what about our TV-denoising model:

$$\min_{u} \frac{1}{2} \|u - f\|^2 + \alpha \|Du\|_1?$$

The minimization problem itself already is a proximal operator and not easy-to-evaluate.

Not solvable with any algorithm we did? Or maybe it is? \rightarrow Let us develop some ideas on the board!

Gradient Methods

Michael Moeller

Visual Scene Analysis

Gradient Descent (GD)

Definition

Intuition about convergence

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Applications Conclusion

Projected GD

Convergence Applications

Proximal Gradient

Extensions

from 07.06.2018, slide 85/85