Chapter 3

Duality

Convex Optimization for Computer Vision SS 2019

Michael Moeller Chair for Computer Vision University of Siegen Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Fenchel Duality

Duality

Summary: descent methods

For energies of the form

$$u^* \in \arg\min_{u \in \mathbb{R}^n} F(u) + G(u),$$

for proper, closed, convex $F: \mathbb{R}^n \to \mathbb{R}$, $G: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$, with

F additionally being L-smooth, we discussed

Gradient descent:
$$G \equiv 0$$

Gradient projection: $G = \delta_C$

Proximal gradient: *G* simple (easy to compute prox)

Convergence rates

- Energy convergence in $\mathcal{O}(1/k)$ for "plain" method
- Energy convergence in $\mathcal{O}(1/k^2)$ for Nesterov's method
- Energy and iterate convergence in $\mathcal{O}(c^k)$, c < 1, for strongly convex energies.

Duality

Michael Moeller

Computer

Vision

Duality

Motivation

Convex Conjugation

How powerful is the gradient projection algorithm?

Consider the total variation denoising problem

$$u^* \in \operatorname*{argmin}_{u} \frac{1}{2} \|u - f\|_2^2 + \alpha \|Du\|_1,$$

with the finite difference operator $D: \mathbb{R}^{n \times m \times c} \to \mathbb{R}^{nm \times 2c}$.

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

How powerful is the gradient projection algorithm?

Consider the total variation denoising problem

$$u^* \in \operatorname*{argmin} \frac{1}{2} \|u - f\|_2^2 + \alpha \|Du\|_1,$$

with the finite difference operator $D: \mathbb{R}^{n \times m \times c} \to \mathbb{R}^{nm \times 2c}$.

Is subgradient descent really the best we can do despite the "nice" strongly convex energy?

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

How powerful is the gradient projection algorithm?

Consider the total variation denoising problem

$$u^* \in \operatorname*{argmin} \frac{1}{2} \|u - f\|_2^2 + \alpha \|Du\|_1,$$

with the finite difference operator $D: \mathbb{R}^{n \times m \times c} \to \mathbb{R}^{nm \times 2c}$.

Is subgradient descent really the best we can do despite the "nice" strongly convex energy?

Let's try something crazy to try to find a better algorithm:

$$|g| = \max_{|q| \le 1} q \cdot g$$

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

Following the crazy idea...

The previous simple observation tells us that

$$\begin{split} \|g\|_1 &= \sum_i |g_i| = \sum_i \max_{|q_i| \le 1} q_i \cdot g_i \\ &= \max_{|q_i| \le 1, \forall i} \underbrace{\sum_i q_i \cdot g_i}_{=:\langle g, q \rangle} \\ &= \max_{\max_i |q_i| \le 1} \langle g, q \rangle = \max_{\|q\|_{\infty} \le 1} \langle g, q \rangle \end{split}$$

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation Fenchel Duality

Following the crazy idea...

The previous simple observation tells us that

$$\|g\|_1 = \sum_i |g_i| = \sum_i \max_{|q_i| \le 1} q_i \cdot g_i$$

$$= \max_{|q_i| \le 1, orall i} \sum_j q_i \cdot g_i$$

$$= \max_{\max_i |q_i| \le 1} \langle g, q \rangle = \max_{\|g\|_{\infty} \le 1} \langle g, q \rangle$$

We may write

$$\min_{u} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \|Du\|_{1} = \min_{u} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \max_{\|q\|_{\infty} \le 1} \langle Du, q \rangle$$

$$= \min_{u} \max_{\|q\|_{\infty} \le 1} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \langle Du, q \rangle$$

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation Fenchel Duality

Following the crazy idea...

The previous simple observation tells us that

$$||g||_{1} = \sum_{i} |g_{i}| = \sum_{i} \max_{|q_{i}| \leq 1} q_{i} \cdot g_{i}$$

$$= \max_{|q_{i}| \leq 1, \forall i} \sum_{i} q_{i} \cdot g_{i}$$

$$= \max_{\max_{|q_{i}| \leq 1} \langle g, q \rangle} |q_{i}| = \max_{\|g_{i}\|_{\infty} \leq 1} \langle g, q \rangle$$

We may write

$$\min_{u} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \|Du\|_{1} = \min_{u} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \max_{\|q\|_{\infty} \leq 1} \langle Du, q \rangle$$

$$= \min_{u} \max_{\|g\|_{\infty} \leq 1} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \langle Du, q \rangle$$

Can we switch min and max?

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Saddle point problems^a

^aRockafellar, Convex Analysis, Corollary 37.3.2

Let C and D be non-empty closed convex sets in \mathbb{R}^n and \mathbb{R}^m , respectively, and let S be a continuous finite concave-convex function on $C \times D$. If either C or D is bounded, one has

$$\inf_{v \in D} \sup_{q \in C} S(v, q) = \sup_{q \in C} \inf_{v \in D} S(v, q).$$

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Saddle point problems^a

^aRockafellar, Convex Analysis, Corollary 37.3.2

Let C and D be non-empty closed convex sets in \mathbb{R}^n and \mathbb{R}^m , respectively, and let S be a continuous finite concave-convex function on $C \times D$. If either C or D is bounded, one has

$$\inf_{v \in D} \sup_{q \in C} S(v, q) = \sup_{q \in C} \inf_{v \in D} S(v, q).$$

We can therefore compute

$$\begin{aligned} \min_{u} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \|Du\|_{1} &= \min_{u} \max_{\|q\|_{\infty} \le 1} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \langle Du, q \rangle \\ &= \max_{\|q\|_{\infty} \le 1} \min_{u} \frac{1}{2} \|u - f\|_{2}^{2} + \alpha \langle Du, q \rangle \end{aligned}$$

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Now the inner minimization problem obtains its optimum at

$$0 = u - f + \alpha D^* q,$$

$$\Rightarrow u = f - \alpha D^* q.$$

The remaining problem in q becomes

$$\begin{aligned} & \max_{\|q\|_{\infty} \le 1} \frac{1}{2} \|f - \alpha D^* q - f\|_2^2 + \alpha \langle D(f - \alpha D^* q), q \rangle \\ &= \max_{\|q\|_{\infty} \le 1} \frac{1}{2} \|\alpha D^* q\|_2^2 + \alpha \langle Df, q \rangle - \|\alpha D^* q\|_2^2 \\ &= \max_{\|q\|_{\infty} \le 1} - \frac{1}{2} \|\alpha D^* q\|_2^2 + \alpha \langle Df, q \rangle \end{aligned}$$

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation Fenchel Duality

Since we prefer minimizations over maximizations, we write

$$\begin{split} \hat{q} &= \underset{\|q\|_{\infty} \leq 1}{\operatorname{argmin}} \ \frac{1}{2} \|\alpha D^* q\|_2^2 - \alpha \langle Df, q \rangle \\ &= \underset{\|q\|_{\infty} \leq 1}{\operatorname{argmin}} \ \frac{1}{2} \|D^* q\|_2^2 - \frac{1}{\alpha} \langle Df, q \rangle \end{split}$$

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation Fenchel Duality

Since we prefer minimizations over maximizations, we write

$$\begin{split} \hat{q} &= \underset{\|q\|_{\infty} \leq 1}{\operatorname{argmin}} \ \frac{1}{2} \|\alpha D^* q\|_2^2 - \alpha \langle Df, q \rangle \\ &= \underset{\|q\|_{\infty} \leq 1}{\operatorname{argmin}} \ \frac{1}{2} \|D^* q\|_2^2 - \frac{1}{\alpha} \langle Df, q \rangle \end{split}$$

This is a problem we know how to solve! An *L*-smooth function over a simple convex set: Gradient projection

$$q^{k+1} = \pi_C \left(q^k - \tau D \left(D^* q^k - \frac{f}{\alpha} \right) \right),$$

where $C = \{q \in \mathbb{R}^{nm \times 2c} \mid ||q||_{\infty} \leq 1\}.$

A conceptual way to reformulate energy minimization problems?

Maybe our idea

$$\|g\|_1 = \max_{\|q\|_\infty \le 1} \langle q, g \rangle$$

was not so crazy but rather conceptual?

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

A conceptual way to reformulate energy minimization problems?

Maybe our idea

$$\|g\|_1 = \max_{\|q\|_\infty \le 1} \langle q, g \rangle$$

was not so crazy but rather conceptual?

Definition: Convex Conjugate

We define the convex conjugate of the function

$$E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$
 to be

$$E^*(p) = \sup_{u \in \mathbb{R}^n} (\langle u, p \rangle - E(u)).$$

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

Duality

Michael Moeller

Computer Vision

Convexity of the Convex Conjugate

The convex conjugate E^* of any proper function

 $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is convex and closed.

Proof: Exercise

Duality

Motivation

Convex Conjugation Fenchel Duality

Duality

Michael Moeller

Convexity of the Convex Conjugate

The convex conjugate E^* of any proper function

 $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is convex and closed.

Proof: Exercise

Are there reasonable computation rules for the convex conjugate that simplify our lives in practice?

Duality

Motivation

Convex Conjugation

Scalar multiplication :

$$E(u) = \alpha \tilde{E}(u) \Rightarrow E^*(p) = \alpha \tilde{E}^*(p/\alpha)$$

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

Scalar multiplication :

$$E(u) = \alpha \tilde{E}(u) \Rightarrow E^*(p) = \alpha \tilde{E}^*(p/\alpha)$$

Separable sum:

$$E(u_1, u_2) = E_1(u_1) + E_2(u_2) \Rightarrow E^*(p_1, p_2) = E_1^*(p_1) + E_2^*(p_2)$$

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Scalar multiplication :

$$E(u) = \alpha \tilde{E}(u) \Rightarrow E^*(p) = \alpha \tilde{E}^*(p/\alpha)$$

Separable sum:

$$E(u_1, u_2) = E_1(u_1) + E_2(u_2) \Rightarrow E^*(p_1, p_2) = E_1^*(p_1) + E_2^*(p_2)$$

Careful: Only separable sums work this way!
 Sum rule for E₁, E₂ closed, convex, proper:

$$E(u) = E_1(u) + E_2(u) \Rightarrow E^*(p) = \inf_{p=p_1+p_2} E_1^*(p_1) + E_2^*(p_2).$$

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation Fenchel Duality

from 10.05.2019, slide 11/19

Scalar multiplication :

$$E(u) = \alpha \tilde{E}(u) \Rightarrow E^*(p) = \alpha \tilde{E}^*(p/\alpha)$$

Separable sum:

$$E(u_1, u_2) = E_1(u_1) + E_2(u_2) \Rightarrow E^*(p_1, p_2) = E_1^*(p_1) + E_2^*(p_2)$$

Careful: Only separable sums work this way!
 Sum rule for E₁, E₂ closed, convex, proper:

$$E(u) = E_1(u) + E_2(u) \Rightarrow E^*(p) = \inf_{p=p_1+p_2} E_1^*(p_1) + E_2^*(p_2).$$

Translation:

$$E(u) = \tilde{E}(u-b) \Rightarrow E^*(p) = \tilde{E}^*(p) + \langle p, b \rangle$$

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Scalar multiplication :

$$E(u) = \alpha \tilde{E}(u) \Rightarrow E^*(p) = \alpha \tilde{E}^*(p/\alpha)$$

Separable sum:

$$E(u_1,u_2) = E_1(u_1) + E_2(u_2) \ \Rightarrow \ E^*(p_1,p_2) = E_1^*(p_1) + E_2^*(p_2)$$

 Careful: Only separable sums work this way! **Sum rule** for E_1 , E_2 closed, convex, proper:

$$E(u) = E_1(u) + E_2(u) \Rightarrow E^*(p) = \inf_{p=p_1+p_2} E_1^*(p_1) + E_2^*(p_2).$$

Translation:

$$E(u) = \tilde{E}(u-b) \Rightarrow E^*(p) = \tilde{E}^*(p) + \langle p, b \rangle$$

Additional affine functions:

$$E(u) = \tilde{E}(u) + \langle b, u \rangle + a \Rightarrow E^*(p) = \tilde{E}^*(p-b) - a$$

Examples:

• $E(u) = \frac{1}{2}u^2$ leads to $E^*(p) = \frac{1}{2}p^2$

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

Examples:

- $E(u) = \frac{1}{2}u^2$ leads to $E^*(p) = \frac{1}{2}p^2$
- $E(u) = ||u||_2$ leads to $E^*(p) = \begin{cases} 0 & \text{if } ||p||_2 \le 1, \\ \infty & \text{else.} \end{cases}$

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Examples:

- $E(u) = \frac{1}{2}u^2$ leads to $E^*(p) = \frac{1}{2}p^2$
- $E(u) = \|u\|_2$ leads to $E^*(p) = \begin{cases} 0 & \text{if } \|p\|_2 \le 1, \\ \infty & \text{else.} \end{cases}$ $E(u) = \|u\|_1$ leads to $E^*(p) = \begin{cases} 0 & \text{if } \|p\|_\infty \le 1, \\ \infty & \text{else.} \end{cases}$

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

Examples:

- $E(u) = \frac{1}{2}u^2$ leads to $E^*(p) = \frac{1}{2}p^2$
- $E(u) = \|u\|_2$ leads to $E^*(p) = \begin{cases} 0 & \text{if } \|p\|_2 \le 1, \\ \infty & \text{else.} \end{cases}$ $E(u) = \|u\|_1$ leads to $E^*(p) = \begin{cases} 0 & \text{if } \|p\|_\infty \le 1, \\ \infty & \text{else.} \end{cases}$ $E(u) = \|u\|_\infty$ leads to $E^*(p) = \begin{cases} 0 & \text{if } \|p\|_1 \le 1, \\ \infty & \text{else.} \end{cases}$ $E(u) = \|u\|_\infty$ leads to $E^*(p) = \begin{cases} 0 & \text{if } \|p\|_1 \le 1, \\ \infty & \text{else.} \end{cases}$

Duality

Michael Moeller

Computer

Duality

Motivation

Convex Conjugation

Examples:

- $E(u) = \frac{1}{2}u^2$ leads to $E^*(p) = \frac{1}{2}p^2$
- $E(u) = \|u\|_2$ leads to $E^*(p) = \begin{cases} 0 & \text{if } \|p\|_2 \le 1, \\ \infty & \text{else.} \end{cases}$ $E(u) = \|u\|_1$ leads to $E^*(p) = \begin{cases} 0 & \text{if } \|p\|_\infty \le 1, \\ \infty & \text{else.} \end{cases}$
- $E(u) = ||u||_{\infty}$ leads to $E^*(p) = \begin{cases} 0 & \text{if } ||p||_1 \leq 1, \\ \infty & \text{else.} \end{cases}$
- $E(u) = \begin{cases} 0 & \text{if } ||u||_2 \le 1, \\ \infty & \text{else.} \end{cases}$ leads to $E^*(p) = ||p||_2.$

Duality

Michael Moeller

Computer

Duality

Motivation

Convex Conjugation

Examples:

- $E(u) = \frac{1}{2}u^2$ leads to $E^*(p) = \frac{1}{2}p^2$
- $E(u) = \|u\|_2$ leads to $E^*(p) = \begin{cases} 0 & \text{if } \|p\|_2 \le 1, \\ \infty & \text{else.} \end{cases}$ $E(u) = \|u\|_1$ leads to $E^*(p) = \begin{cases} 0 & \text{if } \|p\|_\infty \le 1, \\ \infty & \text{else.} \end{cases}$
- $E(u) = ||u||_{\infty}$ leads to $E^*(p) = \begin{cases} 0 & \text{if } ||p||_1 \leq 1, \\ \infty & \text{else.} \end{cases}$
- $\bullet \ E(u) = \left\{ \begin{array}{ll} 0 & \text{if } \|u\|_2 \leq 1, \\ \infty & \text{else.} \end{array} \right. \text{ leads to } E^*(p) = \|p\|_2.$ $\bullet \ E(u) = \left\{ \begin{array}{ll} 0 & \text{if } \|u\|_\infty \leq 1, \\ \infty & \text{else.} \end{array} \right. \text{ leads to } E^*(p) = \|p\|_1.$

Duality

Michael Moeller

Computer

Duality

Motivation

Convex Conjugation

Examples:

•
$$E(u) = \frac{1}{2}u^2$$
 leads to $E^*(p) = \frac{1}{2}p^2$

•
$$E(u) = ||u||_2$$
 leads to $E^*(p) = \begin{cases} 0 & \text{if } ||p||_2 \le 1, \\ \infty & \text{else.} \end{cases}$

•
$$E(u) = ||u||_1$$
 leads to $E^*(p) = \begin{cases} 0 & \text{if } ||p||_\infty \le 1, \\ \infty & \text{else.} \end{cases}$

•
$$E(u) = ||u||_{\infty}$$
 leads to $E^*(p) = \begin{cases} 0 & \text{if } ||p||_1 \le 1, \\ \infty & \text{else.} \end{cases}$

•
$$E(u) = \begin{cases} 0 & \text{if } ||u||_2 \le 1, \\ \infty & \text{else.} \end{cases}$$
 leads to $E^*(p) = ||p||_2.$

•
$$E(u) = \begin{cases} 0 & \text{if } ||u||_{\infty} \leq 1, \\ \infty & \text{else.} \end{cases}$$
 leads to $E^*(p) = ||p||_1.$

•
$$E(u) = \begin{cases} 0 & \text{if } ||u||_1 \leq 1, \\ \infty & \text{else.} \end{cases}$$
 leads to $E^*(p) = ||p||_{\infty}.$

Suspicion: $E^{**} = E$?

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Fenchel-Young Inequality

Duality

Michael Moeller

Computer Vision

Fenchel-Young Inequality^a

^aBorwein, Zhu *Techniques of variational analysis*, Proposition 4.4.1

Let E be proper, convex and closed, $u \in \text{dom}(E) \subset \mathbb{R}^n$, and $p \in \mathbb{R}^n$, then

$$E(u) + E^*(p) \ge \langle u, p \rangle.$$

Equality holds if and only if $p \in \partial E(u)$.

Proof: Board.

Duality

Motivation

Convex Conjugation Fenchel Duality

Biconjugate

Theorem: Biconjugate^a

^aRockafellar, Convex Analysis, Theorem 12.2

Let $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be proper, convex and closed, then $E^{**} = E$.

Incomplete proof on the board.

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation Fenchel Duality

Biconjugate

Theorem: Biconjugate^a

^aRockafellar, Convex Analysis, Theorem 12.2

Let $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be proper, convex and closed, then $E^{**} = E$.

Incomplete proof on the board.

Now we understand what we did for TV minimization: Replace $\|Du\|_1$ by

$$(\|\cdot\|_1)^{**}(Du) = \sup_{\rho} \langle \rho, Du \rangle - \delta_{\|\cdot\|_{\infty} \leq 1}(\rho).$$

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Convex conjugation

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

Fenchel Duality

- Theorem: Subgradient of convex conjugate^a
 - ^aRockafellar, Convex Analysis, Theorem 23.5

Let *E* be proper, convex and closed, then the following two conditions are equivalent:

- $p \in \partial E(u)$
- $u \in \partial E^*(p)$

Proof: Board

Convex conjugation

Duality

Michael Moeller

Computer Vision

Motivation

Convex Conjugation

Fenchel Duality

Theorem: Subgradient of convex conjugate^a

^aRockafellar, Convex Analysis, Theorem 23.5

Let *E* be proper, convex and closed, then the following two conditions are equivalent:

- $p \in \partial E(u)$
- u ∈ ∂E*(p)

Proof: Board

Board: A quick way for repeating our TV-reformulation.

Fenchel duality

Fenchel's Duality Theorem^a

^aC.f. Rockafellar, *Convex Analysis*, Section 31

Let $G: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ and $F: \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ be proper, closed, convex functions, $K \in \mathbb{R}^{m \times n}$, and let there exist a $u \in \text{ri}(\text{dom}(G))$ such that $Ku \in \text{ri}(\text{dom}(F))$. Then

$$\inf_{u} \qquad G(u) + F(Ku) \qquad \text{"Primal"}$$

$$= \inf_{u} \sup_{p} \qquad G(u) + \langle p, Ku \rangle - F^{*}(p) \qquad \text{"Saddle point"}$$

$$= \sup_{p} \inf_{u} \qquad G(u) + \langle p, Ku \rangle - F^{*}(p)$$

$$= \sup_{p} \qquad -G^{*}(-K^{T}p) - F^{*}(p) \qquad \text{"Dual"}$$

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Relations between primal and dual variables

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Fenchel Duality

Conclusion

Let the assumptions from Fenchel's Duality Theorem hold. If there exists a pair $(u, p) \in \mathbb{R}^n \times \mathbb{R}^n$ such that one of the following four equivalent conditions are met

$$\mathbf{2} - K^T \mathbf{p} \in \partial \mathbf{G}(\mathbf{u}), \quad K\mathbf{u} \in \partial \mathbf{F}^*(\mathbf{p}),$$

$$3 u \in \partial G^*(-K^T p), \quad p \in \partial F(Ku),$$

$$\mathbf{4} \ u \in \partial G^*(-K^T p), \quad Ku \in \partial F^*(p),$$

Then u solves the primal and p solves the dual optimization problem.

Assume we want to minimize

$$\min_{u} \frac{1}{2} \|u - f\|_{2}^{2} \text{ s.t. } \|Du\|_{\infty} \le c,$$

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

Assume we want to minimize

$$\min_{u} \frac{1}{2} \|u - f\|_{2}^{2} \text{ s.t. } \|Du\|_{\infty} \le c,$$

Dual problem:

$$\max_{p} -\frac{1}{2} \|D^* p\|^2 + \langle D^* p, f \rangle - c \|p\|_1$$

or

$$\hat{p} = \underset{p}{\operatorname{argmin}} \frac{1}{2} \|D^* p - f\|^2 + c \|p\|_1$$

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

Assume we want to minimize

$$\min_{u} \frac{1}{2} \|u - f\|_{2}^{2} \text{ s.t. } \|Du\|_{\infty} \le c,$$

Dual problem:

$$\max_{p} -\frac{1}{2} \|D^*p\|^2 + \langle D^*p, f \rangle - c\|p\|_1$$

or

$$\hat{p} = \underset{p}{\operatorname{argmin}} \frac{1}{2} ||D^*p - f||^2 + c||p||_1$$

We can apply the proximal gradient algorithm!

Duality

Michael Moeller

Duality

Motivation

Convex Conjugation

Assume we want to minimize

$$\min_{u} \frac{1}{2} ||u - f||_{2}^{2} \text{ s.t. } ||Du||_{\infty} \le c,$$

Dual problem:

$$\max_{\rho} -\frac{1}{2} \|D^* \rho\|^2 + \langle D^* \rho, f \rangle - c \|\rho\|_1$$

or

$$\hat{p} = \underset{p}{\operatorname{argmin}} \frac{1}{2} ||D^*p - f||^2 + c||p||_1$$

We can apply the proximal gradient algorithm!

Knowing in advance if the dual problem is more 'friendly':

Conjugation of strongly convex functions

If $E : \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper, closed and m-strongly convex, then E^* is proper, closed, convex and 1/m-smooth.

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Does this solve all problems?

Consider TV- $\!\ell^1$ denoising, i.e.,

$$\inf_{u} \|u - f\|_{1} + \alpha \|Du\|_{1}$$

$$= \sup_{q} \langle \alpha D^{*}q, f \rangle - \delta_{\|\cdot\|_{\infty} \leq 1} (-\alpha D^{*}q) - \delta_{\|\cdot\|_{\infty} \leq 1}(q)$$

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation

Does this solve all problems?

Consider TV- ℓ^1 denoising, i.e.,

$$\inf_{u} \|u - f\|_{1} + \alpha \|Du\|_{1}$$

$$= \sup_{q} \langle \alpha D^{*}q, f \rangle - \delta_{\|\cdot\|_{\infty} \leq 1} (-\alpha D^{*}q) - \delta_{\|\cdot\|_{\infty} \leq 1}(q)$$

The problem did not become easier! What can we do?

Duality

Michael Moeller

Computer Vision

Duality

Motivation

Convex Conjugation Fenchel Duality

Does this solve all problems?

Michael Moeller

Duality

Computer Vision

Duality

Motivation

Convex Conjugation Fenchel Duality

Consider TV- $\!\ell^1$ denoising, i.e.,

$$\inf_{u} \|u - f\|_1 + \alpha \|Du\|_1$$

$$= \sup_{q} \langle \alpha D^* q, f \rangle - \delta_{\|\cdot\|_{\infty} \le 1} (-\alpha D^* q) - \delta_{\|\cdot\|_{\infty} \le 1} (q)$$

The problem did not become easier! What can we do?

Next chapter

Work on the saddle-point problem direct! Try to find (u,q) with

$$-K^Tq \in \partial G(u), \quad Ku \in \partial F^*(q).$$