Convex Optimization for Computer Vision

Lecture: M. Möller Exercises: J. Geiping Summer Semester 2017 Universität Siegen Department ETI Visual Scene Analysis

Weekly Exercises 0

Room: HF-115 Wednessday, 26.04.2017, 12:15-14:00

Reminder: Finite differences

Remember the Taylor approximation: Let $f \in C^{n+1}(\mathbb{R})$ be a real valued function that is n+1-times continuously differentiable. Then there exists a function h_n such that

$$f(x) = \sum_{k=0}^{n} \frac{(x-y)^k}{k!} f^{(k)}(y) + \frac{(x-y)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$

for some ξ between x and y.

Let f be two times differentiable, and let the second derivative be bounded by C, i.e. $\sup_x |f''(x)| \leq C$. Show that for any pair x_k , x_{k+1} with $h = x_{k+1} - x^k$ it holds that

$$f'(x_k) = \frac{f(x_{k+1}) - f(x_k)}{h} + r(h),$$

for some function r. Furthermore, it holds that $r(h) \in \mathcal{O}(h)$, i.e. there exists a constant c such that $|r(h)| \le c|h|$ (for all sufficiently small h).

Intro to Sparse Linear Operators in MATLAB

Throughout the course we will work in the finite dimensional setting, i.e. we discretely represent gray value images $f: \Omega \to \mathbb{R}$ or color images $f: \Omega \to \mathbb{R}^3$ as (vectorized) matrices $f \in \mathbb{R}^{m \times n}$ (vec $(f) \in \mathbb{R}^{mn}$) respectively $f \in \mathbb{R}^{m \times n \times 3}$ (vec $(f) \in \mathbb{R}^{3mn}$). To discretely express functionals like the total variation for smooth f

$$TV(f) := \int_{\Omega} \|\nabla f(x)\| \, \mathrm{d}x$$

you will therefore need a discrete gradient operator

$$D := \begin{pmatrix} D_x \\ D_y \end{pmatrix}$$

for vectorized representations vec(f) of images $f \in \mathbb{R}^{m \times n}$ so that

$$TV(f) = ||D\text{vec}(f)||_{2,1} = \sum_{i=1}^{nm} \sqrt{(D_x \cdot \text{vec}(f))_i^2 + (D_y \cdot \text{vec}(f))_i^2}.$$

The aim of this exercise is to derive the gradient operator and learn how to implement it with MATLAB.

Exercise 1. Let $f \in \mathbb{R}^{m \times n}$ be a discrete grayvalue image. Your task is to find matrices \tilde{D}_x and \tilde{D}_y for computing the forward differences f_x , f_y in x and y-direction of the image f with Neumann boundary conditions so that:

$$f_x = f \cdot \tilde{D}_x := \begin{pmatrix} f_{12} - f_{11} & f_{13} - f_{12} & \dots & f_{1n} - f_{1(n-1)} & 0 \\ f_{22} - f_{21} & \dots & & & 0 \\ \vdots & & & \vdots & 0 \\ f_{m2} - f_{m1} & \dots & & f_{mn} - f_{m(n-1)} & 0 \end{pmatrix}$$
(1)

and

$$f_{y} = \tilde{D}_{y} \cdot f = \begin{pmatrix} f_{21} - f_{11} & f_{22} - f_{12} & \dots & f_{2n} - f_{1n} \\ f_{31} - f_{21} & \dots & f_{3n} - f_{2n} \\ \vdots & & & \vdots \\ f_{m1} - f_{(m-1)1} & \dots & f_{mn} - f_{(m-1)n} \\ 0 & \dots & 0 & 0 \end{pmatrix}.$$
 (2)

Exercise 2. Implement the derivative operators from the previous exercise using MATLABs spdiags command. Load the image from the file Vegetation-028.jpg using the command imread and convert it to a grayvalue image using the command rgb2gray. Finally apply the operators to the image and display your results using imshow.

For our algorithms it is more convenient to represent an image f as a vector $\text{vec}(f) \in \mathbb{R}^{mn}$, that means that the columns of f are stacked one over the other.

Exercise 3. Derive a gradient operator

$$D = \begin{pmatrix} D_x \\ D_y \end{pmatrix}$$

for vectorized images so that

$$D_x \cdot \text{vec}(f) = \text{vec}(f_x)$$
 $D_y \cdot \text{vec}(f) = \text{vec}(f_y)$

You can use that it holds that for matrices A, X, B

$$AXB = C \iff (B^{\top} \otimes A)\text{vec}(X) = \text{vec}(C)$$

where \otimes denote the Kronecker (MATLAB: kron) product.

Experimentally verify that the results of Ex. 2 and Ex. 3 are equal by reshaping them to the same size using MATLABs reshape or the : operator, and showing that the norm of the difference of both results is zero.

Exercise 4. Assemble an operator D^c for computing the gradient (or more precisely the Jacobian) of a color image $f \in \mathbb{R}^{n \times m \times 3}$ using MATLABs cat and kron commands.

Exercise 5. Compute the color total variation given as

$$TV(f) = \|D^{c}\operatorname{vec}(f)\|_{F,1} = \sum_{i=1}^{nm} \left\| \begin{pmatrix} (D_{x} \cdot \operatorname{vec}(f_{r}))_{i} & (D_{x} \cdot \operatorname{vec}(f_{g}))_{i} & (D_{x} \cdot \operatorname{vec}(f_{b}))_{i} \\ (D_{y} \cdot \operatorname{vec}(f_{r}))_{i} & (D_{y} \cdot \operatorname{vec}(f_{g}))_{i} & (D_{y} \cdot \operatorname{vec}(f_{b}))_{i} \end{pmatrix} \right\|_{F}$$

of the two images Vegetation-028.jpg and Vegetation-043.jpg and compare the values. What do you observe? Why?