Variational Methods for Computer Vision

Lecture: M. Möller Exercises: J. Geiping Winter Semester 16/17 Visual Scene Analysis Institute for Computer Science University of Siegen

Weekly Exercises 1

Room: H-C 7326

Wednesday, 26.10.2016, 14:15-15:45

Submission deadline: Monday, 24.10.2016, 16:00 in Room H-C 7327

Theory

Exercise 1 (4 points). Let $A \in \mathbb{R}^{n \times m}$ be a matrix and $f \in \mathbb{R}^n$. Show that $E : \mathbb{R}^n \to \mathbb{R}$, $E(u) = \frac{1}{2} ||Au - f||^2$ is a convex function.

Exercise 2 (4 points). Let $E: \mathbb{R}^n \to \mathbb{R}$ be a convex function. Show that any local minimizer of E is a global minimizer of E.

Exercise 3 (4 points). Let $A \in \mathbb{R}^{n \times m}$ be a matrix and $f \in \mathbb{R}^n$. Consider the energy

$$E(u) = \frac{1}{2} ||Au - f||^2,$$

where $||x||^2 = \sum_i x_i^2$. Our goal is to determine the optimality condition for minimizing E.

Let \hat{u} be a minimizer. Naturally, it holds that

$$E(\hat{u}) - E(\hat{u} + \epsilon h) \le 0$$

for all $\epsilon \in \mathbb{R}$ and $h \in \mathbb{R}^m$.

1. Show that

$$\epsilon \langle A^T (A\hat{u} - f), h \rangle - \frac{\epsilon^2}{2} \|Ah\|^2 \le 0$$

holds for all $\epsilon \in \mathbb{R}$ and $h \in \mathbb{R}^m$.

2. Divide by ϵ for $\epsilon > 0$ and conclude that

$$\langle A^T(A\hat{u}-f), h \rangle \le 0.$$

3. Show that

$$A^T(A\hat{u} - f) = 0.$$

Programming

Exercise 4 (4 points). Familiarize yourself with MATLAB.

- 1. Read the image $ein_ei.jpg$ from the lecture materials into MATLAB and convert it into double format with values in [0, 1].
- 2. Understand the 'colon' (:) operator and the 'reshape' function. Convert the image I into a vector and back into an image using these functions.
- 3. Now implement a finite differences Laplace filter Δ . This operator can be written as a filter:

```
\Delta = [0 \ 1 \ 0; \ 1 \ -4 \ 1; \ 0 \ 1 \ 0];
```

Compute $\Delta * I$ with

- (a) the 'imfilter' function
- (b) an equivalent matrix-vector multiplication. Write the image as a vector and devise an appropriate matrix.

Check to make sure both results are equal.

- 4. Now test your Laplace filter by computing $I-\alpha\Delta I$. What happens for different values of α ?
- 5. Add noise to the image I by computing

```
I = I + 0.1*rand(size(I));
```

and repeat the experiment in 4. What do you observe?