Variational Methods for Computer Vision

Lecture: M. Möller Exercises: J. Geiping Winter Semester 16/17 Visual Scene Analysis Institute for Computer Science University of Siegen

Weekly Exercises 4

Room: H-C 7326

Wednesday, 16.11.2016, 14:15-15:45

Submission deadline: Monday, 14.11.2016, 16:00 in the lecture Programming: email to jonas.geiping@uni-siegen.de

Theory

Exercise 1 (2 Points). Let

$$W = \begin{pmatrix} A & B \\ B^T & B^T A^{-1} B \end{pmatrix}$$

for $W \in \mathbb{R}^{N \times N}$, $A \in \mathbb{R}^{r \times r}$, and $B \in \mathbb{R}^{r \times N - r}$. Prove that $\operatorname{rank}(W) \leq r$ by showing the identity

$$W = \bar{U} \; \Sigma \; \bar{U}^T, \qquad \text{for} \quad \bar{U} = \begin{pmatrix} U \\ B^T U \Sigma^{-1} \end{pmatrix} \in \mathbb{R}^{N \times r}$$

where $A = U\Sigma U^T$ is the eigendecomposition of A.

It can be shown that this W with $\operatorname{rank}(W) \leq r$ has an eigendecomposition $W = VDV^T$ for some $V \in \mathbb{R}^{N \times r}$ and D being diagonal ¹, but you can skip this step.

Exercise 2 (4 points). Let $W \in \mathbb{R}^{N \times N}$ be a rank r matrix with eigendecomposition $W = VDV^T$. Show that the solution to

$$\hat{u} = \operatorname{argmin}_{u} \frac{1}{2} \|u - f\|^{2} + \frac{\alpha}{2} \langle u, (I - W)u \rangle$$

is $\hat{u} = f + V \tilde{D} V^T f$, where \tilde{D} is a diagonal matrix with $\tilde{D}_{ii} = \frac{1}{1 + \alpha + \alpha \sigma_i} - \frac{1}{1 + \alpha}$ and σ_i are the diagonal entries of D.

Start with the optimality condition and try to compute $V^T\hat{u}$ first, then deduct the solution.

Hint: Consider the decomposition $UU^Tx + (I - UU^T)x = 0$ for your optimality condition.

¹See Fowlkes et al. Spectral Grouping Using the Nyström method, (2004)

Understanding Code

Exercise 3 (4 points). Download the functions "IntegralNLM.m", "IntegralImage.m", and "ImShift.m" from the course's website. Answer the following questions:

- What does "ImShift.m" do?
- What does "IntegralImage.m" do?
- State a mathematical formula for the (i, j)-th entry of the variable ssd in IntegralNLM.m.
- Based on the previous exercise, state a formula for *PatchDist*.

Programming

Exercise 4. Load the image *bikes* provided on the course's website in Matlab and create a noisy version by adding Gaussian noise ($help\ randn$). Use the downloaded functions from the previous exercise to generate a similarity matrix W of the noisy image.

- \bullet Perform nonlocal means denoising with the similarity matrix W
- Compute a diagonal matrix D with

$$d_i = \sum_j W_{i,j}$$

on the diagonal. Perform nonlocal regularization with

$$R(u) = \frac{\alpha}{2} \langle u, Lu \rangle$$

for L = D - W and for $L = I - D^{-1/2}WD^{-1/2}$. Tune the values of α .

• Run your TV denoising code from the previous exercise sheet.

Which denoising algorithm yields the best results?